

KODAK

THE OPHTHALMOLOGY MEDICINES COMPANY

R&D Day October 14, 2019

JOHN BORGESON

CFO

FORWARD-LOOKING STATEMENTS

These slides and the accompanying oral presentation contain forward-looking statements and information. The use of words such as "may," "might," "will," "should," "expect," "plan," "anticipate," "believe," "estimate," "project," "intend," "future," "potential," or "continue," and other similar expressions are intended to identify forward-looking statements. For example, all statements we make regarding the initiation, timing, progress and results of our preclinical and clinical studies and our research and development programs, our regulatory strategy, our ability to advance product candidates into, and successfully complete, clinical studies, and the timing or likelihood of regulatory filings and approvals are forward looking. All forward-looking statements are based on estimates and assumptions by our management that, although we believe to be reasonable, are inherently uncertain. All forward-looking statements are subject to risks and uncertainties that may cause actual results to differ materially from those that we expected. These statements are also subject to a number of material risks and uncertainties that are described in our most recent quarterly report on Form 10-Q, as well as our subsequent filings with the Securities and Exchange Commission. Any forward-looking statement speaks only as of the date on which it was made. We undertake no obligation to publicly update or revise any forward-looking statement, whether as a result of new information, future events or otherwise, except as required by law.

KODIAK'S JOURNEY BUILDING BLOCKS OF AN OPHTHALMOLOGY FRANCHISE

> ABC Platform invented in house with an early focus on retina

- > IP estate for platform & molecules issued/ issuing globally
 - Rights to programs fully owned nominal royalties
 - KSI-301 safety, efficacy and durability proof-of-concept demonstrated
 - KSI-301 in pivotal clinical trial
 - Developing pipeline based on the ABC Platform

2009

2019

KSI-301+

A PIPELINE OF ABCs FOR RETINA

Kodiak's deepening pipeline of mono-, bi-specific and triplet inhibitors that merge biologics with small molecules to address major causes of vision loss beyond retinal vascular disease.

MONOSPECIFIC

1 Molecule, 1 Target

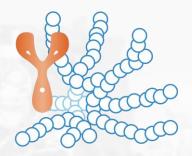
Antibody conjugated to phosphorylcholine biopolymer

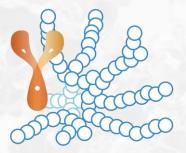
KSI-301 inhibits VEGF— In clinical development

BISPECIFIC

1 Molecule, **2 Targets**

Bispecific antibody conjugated to phosphorylcholine biopolymer


KSI-501 inhibits VEGF and IL-6 for retinal diseases with inflammatory component—In GMP manufacturing


TRIPLET

1 Molecule, **3 Targets**

Bispecific antibody conjugated to phosphorylcholine biopolymer embedded with 100's of copies of small-molecule drug

For high-prevalence multifactorial diseases, such as dry AMD and glaucoma—In research

TODAY'S AGENDA

John Borgeson Welcome Chief Financial Officer—Kodiak Victor Perlroth, M.D. About Kodiak and ABC Platform Chief Executive Officer—Kodiak Jason Ehrlich, M.D., Ph.D. **Putting Phase 1b Data in Context** Chief Medical & Development Officer—Kodiak Charles C. Wykoff, M.D., Ph.D. Latest Data on KSI-301 Director of Research, Retina Consultants of Houston Wet Age-Related Macular Carl Regillo, M.D. Chief, Retina Service, Wills Eve Hospital Degeneration Charles C. Wykoff, M.D., Ph.D. **Diabetic Eye Disease** Director of Research, Retina Consultants of Houston Arshad Khanani, M.D. **Retinal Vein Occlusion** Director of Clinical Research, Sierra Eye Associates Max Cambras, M.A. **Commercial Opportunity** Managing Director & Partner, LEK Consulting Nancy Holekamp, M.D. Synthesis & Reflections Director of Retina Services, Pepose Vision Institute Discussion and Q & A Panel

KODIVK

Our Speakers

Carl Regillo, M.D.

Chief of Retina Service, Wills Eye Hospital

Professor of Ophthalmology, Thomas Jefferson University School of Medicine

Arshad Khanani, M.D.

Director of Clinical Research, Sierra Eye Associate

Clinical Associate Professor, University of Nevada, Reno

Nancy Holekamp, M.D.

Director of Retina Services, Pepose Vision Institute

> Professor of Clinical Ophthalmology & Visual Sciences

Washington University School of Medicine, St. Louis

Charles Wykoff, M.D., Ph.D.

Director of Research, Retina Consultants of Houston & Greater Houston Retina Research Foundation

Deputy Chair of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital

Max Cambras, M.A.

Managing Director & Partner, L.E.K. Consulting

VICTOR PERLROTH, M.D.

CEO

THE OPHTHALMOLOGY MEDICINES COMPANY OUR MISSION

TRAILBLAZING SCIENCE

Our creative and thoughtful foundation

2 "GO-TO" MEDICINES

Our challenge to the status quo

3 SINGULAR FOCUS IN OPHTHALMOLOGY

Our 24 / 7 / 365

OUR 2022 VISION

WET AMD

2021 DAZZLE top-line data 2022 wAMD confirmatory pivotal top-line data 2022 supplemental BLA

Diabetic Macular Edema

Diabetic Retinopathy

THE OPHTHALMOLOGY MEDICINES COMPANY

RETINAL VEIN OCCLUSION

2021 BRVO pivotal top-line data 2021 CRVO pivotal topline data 2022 BLA filing 2022 Potential U.S. approval

KSI-501 anti-VEGF/IL-6

2021 IND submitted 2022 Phase 1 data DME, uveitic macular edema, +/- wAMD

BLA submitted Supplemental BLA submitted Clinical programs IND per year beginning 2021

PROGRAM ACCELERATION

Potential milestones

 Initiation of DAZZLE wAMD pivotal

2020 KSI-301

- Quarterly readouts of Phase 1b data
- Initiate RVO Phase 3 trials
- Initiate confirmatory wAMD Ph3 trial
- DAZZLE interim: % patients on 3, 4, 5 month dosing

2021

KSI-301

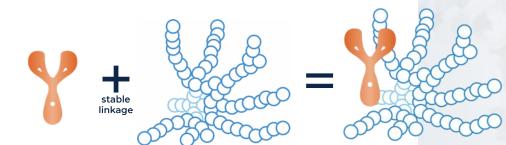
- Three pivotal study readouts:
 - CRVO
 - BRVO
 - DAZZLE WAMD

KSI-501

• Submit IND

2022

KSI-301


- Submit BLA for RVO
- Confirmatory wAMD pivotal data readout
- Submit sBLA for wAMD

KSI-501

- Phase I data in inflammatory retinal diseases
- Additional ABC
- Submit IND

ANTIBODY BIOPOLYMER CONJUGATE ABC PLATFORMTM

A new scientific approach and design platform for intravitreal medicines

ANTIBODY

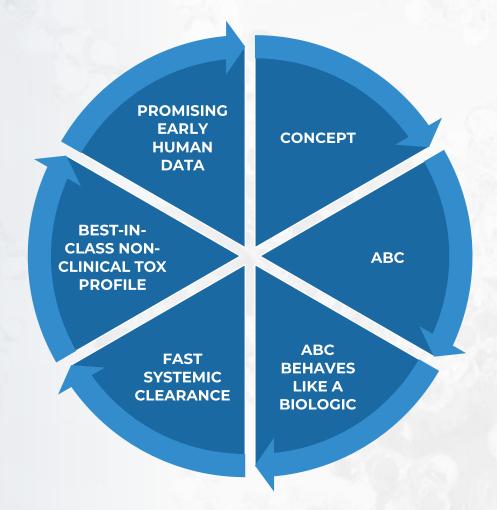
lgG1 with inert immune effector function BIOPOLYMER

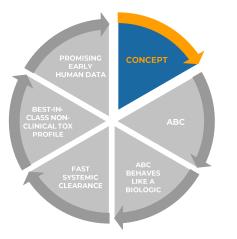
Optically clear, high molecular weight phosphorylcholine polymer

CONJUGATE

Antibody and biopolymer covalently bound via single site-specific linkage Kodiak has designed ophthalmic antibody biopolymer conjugates for increased durability and efficacy.

SAME WHERE IT MATTERS

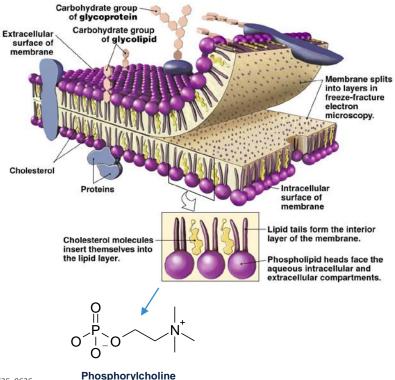

- o Clinically proven targets
- o Antibody-based biologic
- Intravitreal: safest method of administration
- o Optically clear, no residues
- Fast and potent clinical responses

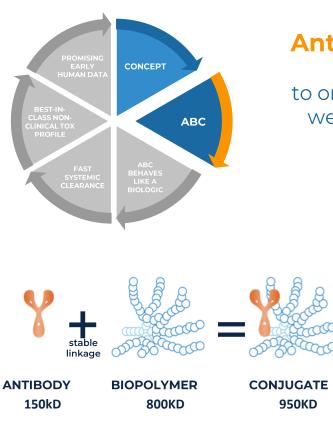

DIFFERENT WHERE IT COUNTS

- Designed-in ocular durability
- o Designed-in rapid systemic clearance
- o Improved bioavailability
- o Improved biocompatibility
- o Improved stability

K S I - 3 0 1

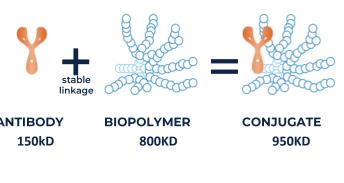
DEEP DIVE: WHAT SETS US APART


KODIAK

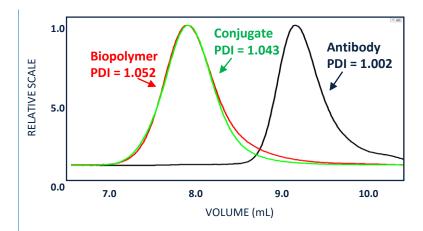

CONCEPT

Phosphorylcholine-based biopolymer is naturally biocompatible

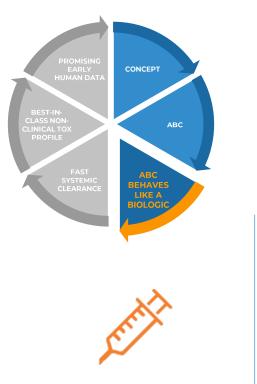
- 1. Phosphorylcholine is the primary lipid head group (>95%) on the external surface of all human cells
- 2. A zwitterion that tightly binds and structures many times of its weight of water, forms "structure water" or "macromolecular water"
- 3. Reduces local non-specific protein-protein interactions, and directs stereospecificity of ligand-receptor interactions
- 4. Demonstrated long term safety and effectiveness in increasing biocompatibility, reduce nonspecific protein absorption, and reduce cell adhesion when coated on surface of medical devices


Zhang et al, Effect of Salt on Phosphorylcholine-based Zwitterionic Polymer Brushes, Langmuir 2016, 32, 5048–5057 Ishihara et al, Why do phospholipid polymers reduce protein adsorption? J. Biomed. Mater. Res. 1998, 39, 323–330. Schlenoff, Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir 2014, 30, 9625–9636. Yang et al, Salt-responsive zwitterionic polymer brushes with tunable friction and antifouling properties Langmuir 2015, 31, 9125–9133.

Antibody Biopolymer Conjugate (ABC)


is a stable linkage of one antibody to one branched, optically clear, high molecularweight phosphorylcholine-based biopolymer

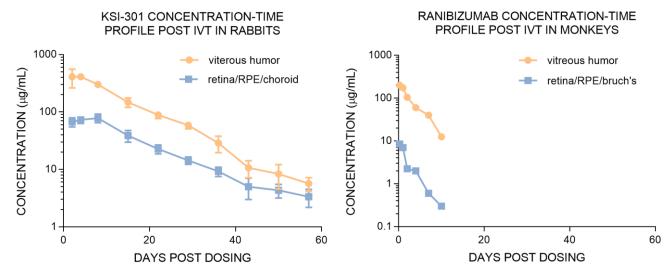
MW of ABC conjugate is the sum of MW of one antibody with one biopolymer



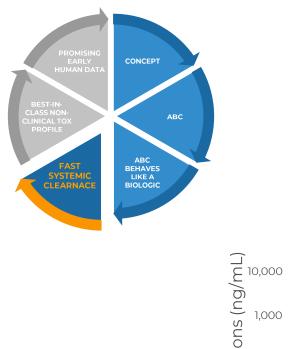
Electron microscope image of ABC

Biopolymer and ABC conjugate are manufactured to high quality with tight molecular weight distribution as shown by PDI

KODIAK

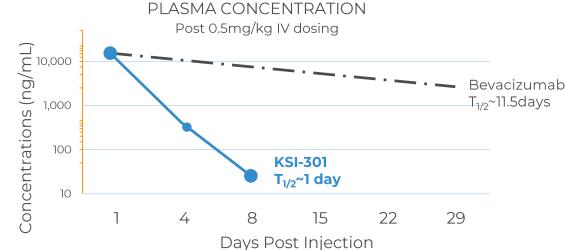


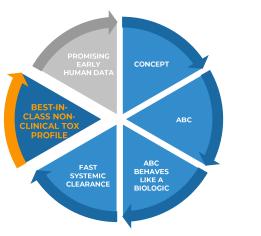
ABC is formulated in an optically clear, aqueous solution.


ABC is administered via intravitreal injection (IVT) like other anti-VEGF biologics.

ABC BEHAVES LIKE A BIOLOGIC

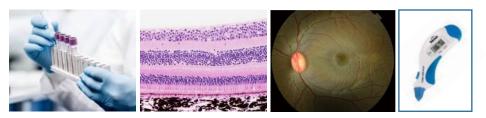
After IVT, ABC traverses from vitreous to the retina/choroid and aqueous, exits to systemic similar to predicate anti-VEGF biologics, albeit with flatter curves



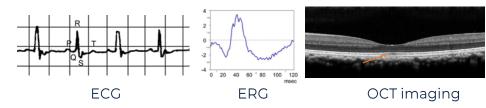

KODIAK

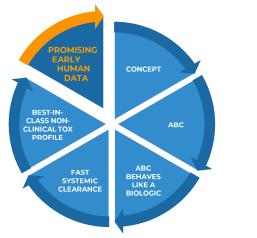
FAST SYSTEMIC CLEARANCE

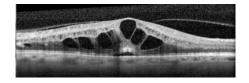
Despite its large size (MW), ABC has fast systemic clearance

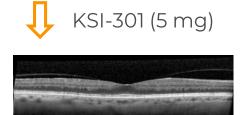


BEST-IN-CLASS NON-CLINICAL TOX PROFILE

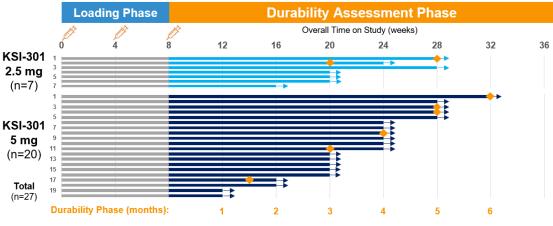

Unlike predicate marketed anti-VEGF agents, the starting human dose in KSI-301 clinical trials was not limited by non-clinical toxicology findings.


Repeat-dose GLP toxicology studies with 4-week dosing intervals in monkeys demonstrated KSI-301 was well tolerated up to the highest doses tested after ocular (intravitreal, 5 mg/eye, up to 7 doses) and systemic (intravenous, up to 5 mg/kg, 3 doses) administration.


No significant KSI-301 treatment related changes were reported in all studies.



Hematology Ocular and systemic Fundus imaging IOP histology



PROMISING EARLY HUMAN DATA

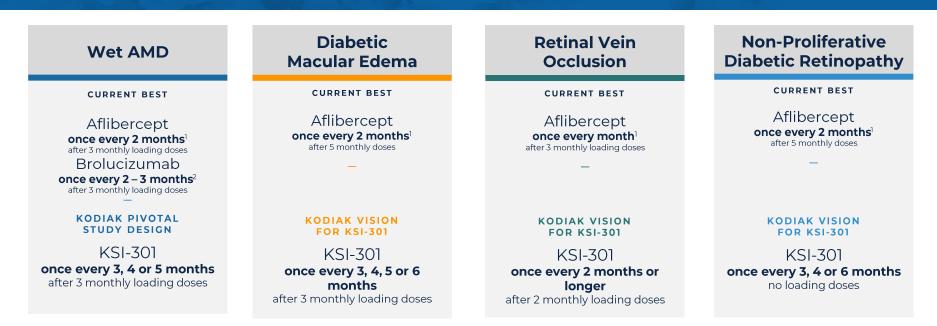
- 300+ doses -
- No inflammation -
- 9+ months; multiple injections -
- No drug related adverse events -
 - Fast onset, durable effect -

KSI-301 in wAMD: Durability Assessment Emerging data support 3 to 5+ month durability

- Retreatment with KSI-301
- → Continuing follow-up

Interim data. Includes patients that reached the first retreatment opportunity (Week 12 visit) by the data cutoff date of 10 Oct 2019. Each bar represents an individual patient. All depicted patients continue to be followed (no discontinuations)

19


KODIAK

JASON EHRLICH, M.D., PH.D.

CMO & CDO

THE NEXT FIRST-LINE ANTI-VEGF

We are developing KSI-301 to have a meaningfully differentiated profile in the 4 major retinal vascular disease

Each has different treatment needs

1. Source: Aflibercept US Prescribing Information as of August 2019

2. Source: Brolucizumab US Prescribing Information as of October 2019 21

2022 Vision: Clinical/Regulatory Timeline

	2019	2020	2021	2022
Phase 1b	105 patients: safety, ef patients each treatme			
BRVO Phase 3		~375 patients Q8W KSI-301 vs Q4W Eylea	6-month endpoint	
CRVO Phase 3		~450 patients Q8W KSI-301 vs Q4W Eylea	6-month endpoint	
DAZZLE Pivotal wAMD Study		patients -Q20W KSI-301 vs Q8W Eylea	12-month endpoint	
Confirmatory wAMD Study		400+ patient Q12W-Q20W	s KSI-301 vs Q8W Eylea 12-mc	onth endpoint

CHARLES WYKOFF, M.D., PH.D.

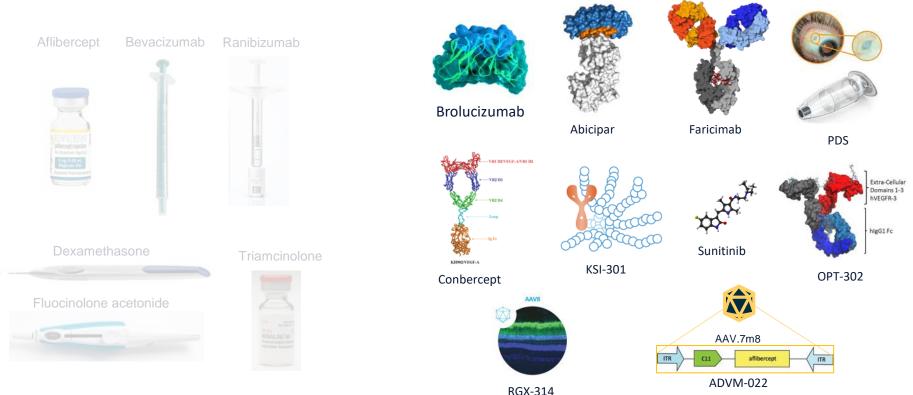
Director of Research Retina Consultants of Houston Extended Durability in Exudative Retinal Diseases Using the Novel Intravitreal Anti-VEGF Antibody Biopolymer Conjugate KSI-301

First-time Results from a Phase 1b Study in Patients with wAMD, DME and RVO

Charles C. Wykoff, MD, PhD Retina Consultants of Houston Houston, TX

> AAO Annual Meeting – Retina Subspecialty Day October 11, 2019

Disclosures

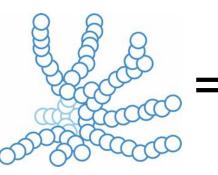

• Financial:

Adverum (C, R); Aerpio (C, R); Alimera Sciences (C); Allegro (C); Allergan (C, R); Apellis (C, R); Bayer (C); Clearside Biomedical (C, R); Chengdu Kanghong (R); DORC (C); EyePoint (C); Fosun (C); Genentech/Roche (C, R); Iveric Bio (formerly Ophthotech) (C, R); Kodiak Sciences (C, R); Neurotech (R), Novartis (C, R); ONL Therapeutics (C); Opthea (R); PolyPhotonix (C); Recens Medical (C, R); Regeneron (C, R, S); Regenxbio (C, R); Samsung (R), Santen (C, R), Takeda (C).

Study Disclosures:

This study includes research conducted on human subjects. Institutional Review Board (IRB) approval was obtained prior to study initiation.

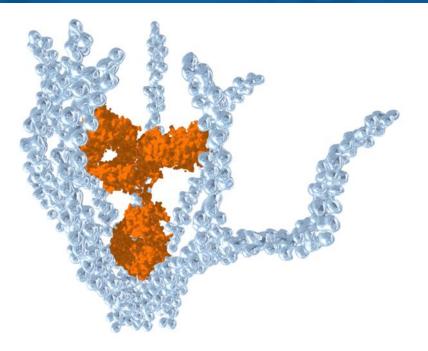
Investigational Treatments for Exudative Retinal Diseases aimed at improving efficacy & durability



Antibody Biopolymer Conjugates (ABC) biologics engineered for increased durability and efficacy

Single Site-Specific Stable (Covalent)

Linkage



ANTIBODY

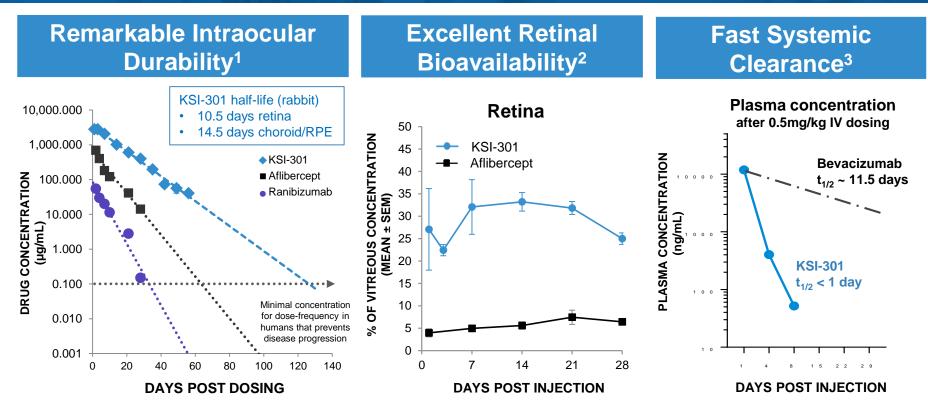
IgG1 Antibody Inert Immune Effector Function

BIOPOLYMER

Branched High Molecular Weight Optically Clear Phosphorylcholine Polymer

ANTIBODY BIOPOLYMER CONJUGATE KSI-301 is an intravitreally injected anti-VEGF ABC

Go Bigger to Last Longer *KSI-301: ABC designed to block all VEGF-A Isoforms*


	Brolucizumab	Ranibizumab	Bevacizumab	Aflibercept	KSI-301
Molecule type	Single-chain antibody fragment	Antibody fragment	Antibody	Recombinant fusion protein	Antibody Biopolymer Conjugate (ABC)
Molecular structure	••	٩	Y	8	
Molecular weight	26 kDa	48 kDa	149 kDa	115 kDa	950 kDa
Clinical dose	6 mg	0.3-0.5 mg	1.25 mg	2 mg	5 mg (by weight of antibody)
Equivalent molar dose	11	0.5	0.9	1	3.5
Equivalent ocular PK	< 0.7	0.7	1	1	3
Equivalent ocular concentration at 3 months	< 0.1	0.001	NA ¹	1	1,000

Equivalent values are shown as (approximate) fold difference relative to aflibercept. kDa= kilodalton

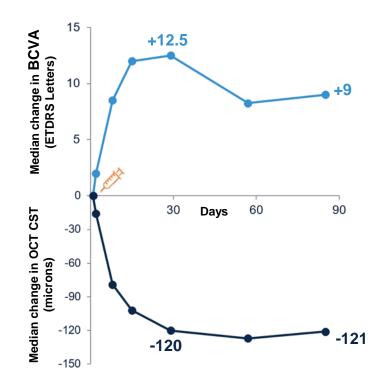
1. Lower affinity of bevacizumab precludes a useful comparison

KSI-301 Properties: Preclinical Data

Special features from the ultra-hydrophilic phosphorylcholine biopolymer

Data from rabbit model. Ranibizumab data: Gaudrealt et al (2007) IOVS 46(2) 726 Gaudrealt et al (2007) Retina 27(9) 1260 Bakri et al (2007) Ophthalmol 114(12) 2179 || Afflibercept data: EVER Congress Portoroz Slovenia (2008) Struble (Covance) Koehler-Stec (Regeneron). Afflibercept data adjusted arithmetically to reflect 5,000 µg dose administered (based on rabbit in vivo dosing of 750 µg) || KSI-301 data on file, adjusted arithmetically to reflect 5,000 µg dose administered (based on rabbit in vivo dosing of 750 µg) || KSI-301 data on file, adjusted arithmetically to reflect 5,000 µg dose administered (based on rabbit in vivo dosing of 750 µg) || KSI-301 data (2017): Covance rabbit ADME (absorption, distribution, metabolism, elimination) model: Afflibercept data (2008): EVER Congress Portoroz Slovenia Struble (Covance), Kehler-Stec (Regeneron), KSI-301 data (2017): Covance study, data on file. Error bars reflect standard error of the mean

3. KSI-301 data: Non-human primate toxicology study, data on file; Bevacizumab data: Yeung et al 2010 Cancer Research.


KSI-301

Clinical Data

113 patients dosed to date

KSI-301 Phase 1a well-tolerated with rapid anatomic & visual response

- Diabetic macular edema (DME) patients with severe disease (n=9)
- Incompletely responsive to previous anti-VEGF treatment (8/9 previously treated) (median 3, range 0-7 in the year prior)
- A single injection of KSI-301 resulted in rapid, high-magnitude responses durable to 12 weeks
 - n=3 patients per dose level (1.25mg, 2.5mg, 5mg)
- No intraocular inflammation and no drug-related adverse events

Median changes from baseline to week 12 pooled across 3 dose groups (n=9 patients total)

KSI-301 Phase 1b

insight into durability among treatment naïve subjects

Randomized, open label study to evaluate multidose safety, efficacy & durability (n=105) **wAMD** (n=35) **RVO** (n=35) **DME** (n=35) Randomized 1:3 KSI-301 2.5 mg (50 µL) KSI-301 5 mg (100 μL) Loading Phase **Durability Assessment Phase** 16 20 28 32 36 Fixed Treatment 8 12 24 Weeks: 0 4 **Re-Treatment** Treatment Schedule: As Needed

wAMD = wet age-related macular degeneration; DME = diabetic macular edema; RVO = retinal vein occlusion; Clinicaltrials.gov ID: NCT03790852

KSI-301 Phase 1b Retreatment Criteria prespecified by disease state

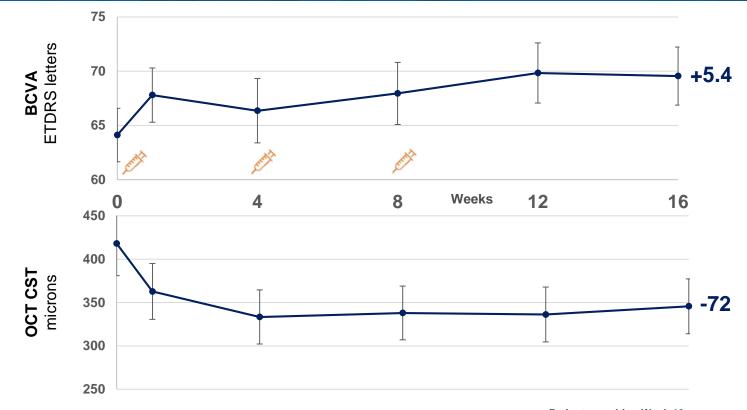
wAMD

- − Increase in CST ≥75 µm with a decrease in BCVA of ≥ 5 letters compared to Week 12, OR
- Decrease in BCVA of > 5 letters compared to Day 1, due to worsening wAMD activity, OR
- Decrease in BCVA of \geq 10 letters compared to the best prior BCVA, due to worsening wAMD activity

DME and RVO

- Increase in CST ≥75 µm with a decrease in BCVA of ≥ 5 letters compared to Week 12 or the prior visit, OR
- Decrease in BCVA of ≥ 10 letters compared to the best prior BCVA, due to worsening DME/RVO disease activity

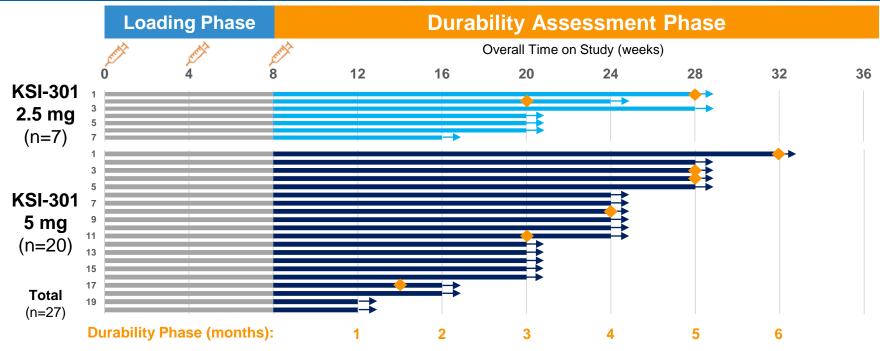
For all subjects, investigators can retreat at their discretion if significant disease activity is present that does not meet the above criteria


KSI-301 Phase 1b Baseline Characteristics

Variable	wAMD Cohort (n=35)	DME Cohort (n=34)	RVO Cohort (n=35)
Age, mean (SD), years	77.2 (11.0)	60.7 (10.4)	63.6 (12.6)
Gender, n (%), female	25 (71.4)	13 (38.2)	13 (37.1)
Race, n (%), White	32 (91.4)	28 (82.4)	31 (88.6)
BCVA, mean (SD), ETDRS letters	64.5 (11.1)	66.8 (10.3)	54.9 (15.4)
BCVA, Snellen 20/40 or better, n (%)	14 (40.0)	16 (47.1)	6 (17.1)
OCT CST, mean (SD), microns	426 (176)	449 (109)	675 (237)

KSI-301 Phase 1b

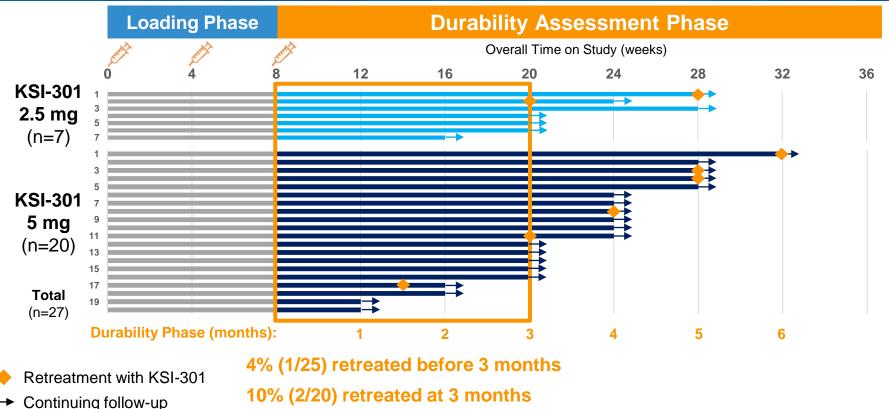
First Time Results


Efficacy of KSI-301 in Wet AMD change from baseline to week 16 in mean BCVA & OCT

Interim data. Includes only randomized patients that reached Week 16 visit by the data cutoff date of 10 Oct 2019; 2.5 & 5 mg doses pooled. Error bars represent standard error of the mean. OCT CST values are site reported. BCVA= best corrected visual acuity; OCT= optical coherence tomography; CST= central subfield thickness

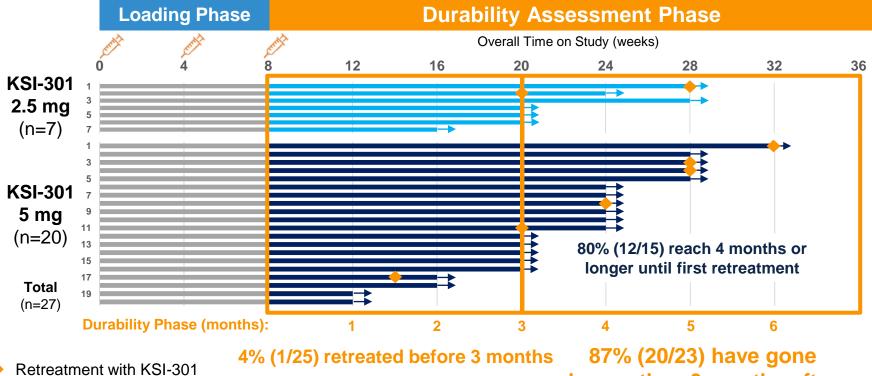
n= 25 Patients reaching Week 16 visit by data cutoff

KSI-301 in wAMD: Durability Assessment Emerging data support 3 to 5+ month durability



Retreatment with KSI-301

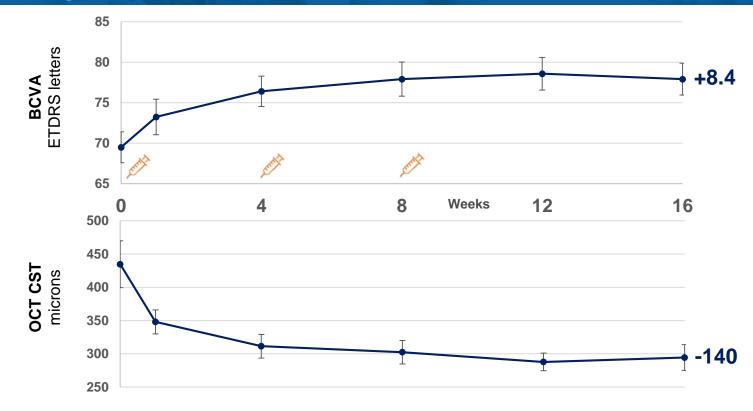
Continuing follow-up


Interim data. Includes patients that reached the first retreatment opportunity (Week 12 visit) by the data cutoff date of 10 Oct 2019. Each bar represents an individual patient. All depicted patients continue to be followed (no discontinuations)

KSI-301 in wAMD: Durability Assessment Emerging data support 3 to 5+ month durability

Interim data. Includes patients that reached the first retreatment opportunity (Week 12 visit) by the data cutoff date of 10 Oct 2019. Each bar represents an individual patient. All depicted patients continue to be followed (no discontinuations)

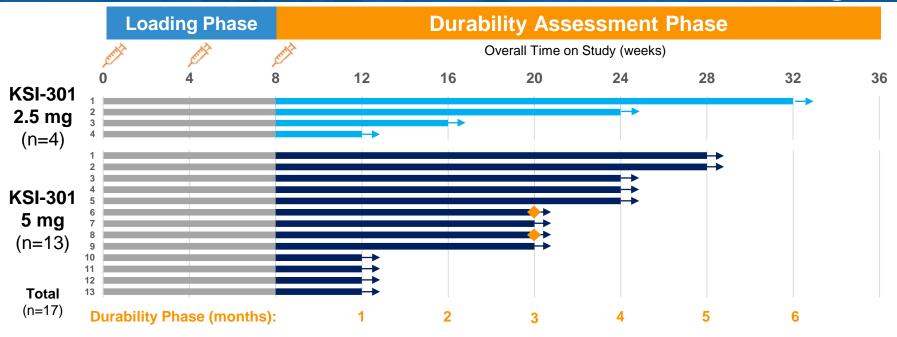
KSI-301 in wAMD: Durability Assessment Emerging data support 3 to 5+ month durability


Continuing follow-up

10% (2/20) retreated at 3 months

87% (20/23) have gone longer than 3 months after the last loading dose

Interim data. Includes patients that reached the first retreatment opportunity (Week 12 visit) by the data cutoff date of 10 Oct 2019. Each bar represents an individual patient. All depicted patients continue to be followed (no discontinuations)


Efficacy of KSI-301 in DME change from baseline to week 16 in mean BCVA & OCT

Interim data. Includes only randomized patients that reached Week 16 visit by the data cutoff date of 10 Oct 2019; 2.5 & 5 mg doses pooled. Error bars represent standard error of the mean. OCT CST values are site reported. BCVA= best corrected visual acuity; OCT= optical coherence tomography; CST= central subfield thickness

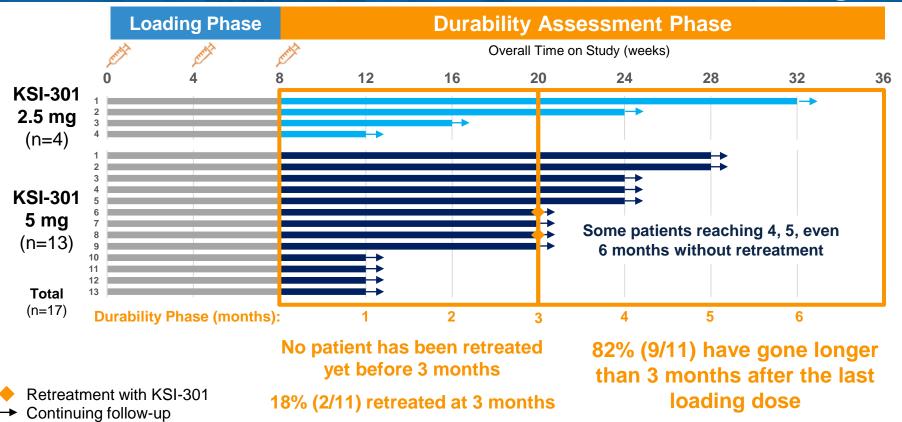
n= 12 Patients reaching Week 16 visit by data cutoff

KSI-301 in DME: 3 loading doses can provide sustained disease control of 3 months or longer

Continuing follow-up

Interim data. Includes only randomized patients that reached the first retreatment opportunity (Week 12 visit) by the data cutoff date of 10 Oct 2019. Each bar represents an individual patient. All depicted patients continue to be followed (no discontinuations)

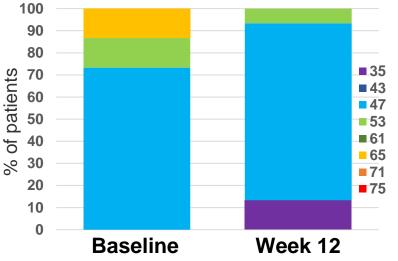
KSI-301 in DME: 3 loading doses can provide sustained disease control of 3 months or longer

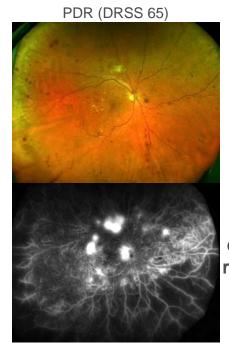


18% (2/11) retreated at 3 months

Interim data. Includes only randomized patients that reached the first retreatment opportunity (Week 12 visit) by the data cutoff date of 10 Oct 2019. Each bar represents an individual patient. All depicted patients continue to be followed (no discontinuations)

Continuing follow-up


KSI-301 in DME: 3 loading doses can provide sustained disease control of 3 months or longer



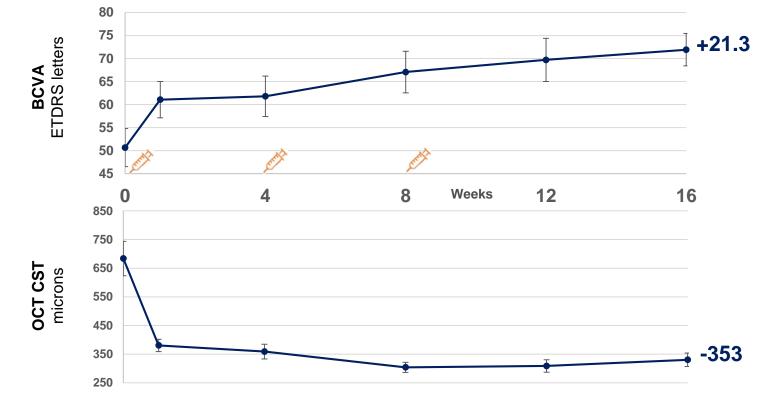
Interim data. Includes only randomized patients that reached the first retreatment opportunity (Week 12 visit) by the data cutoff date of 10 Oct 2019. Each bar represents an individual patient. All depicted patients continue to be followed (no discontinuations)

KSI-301 in DR: signs of disease modification seen within 12 weeks

DRSS Score (n=15)

DAY 1

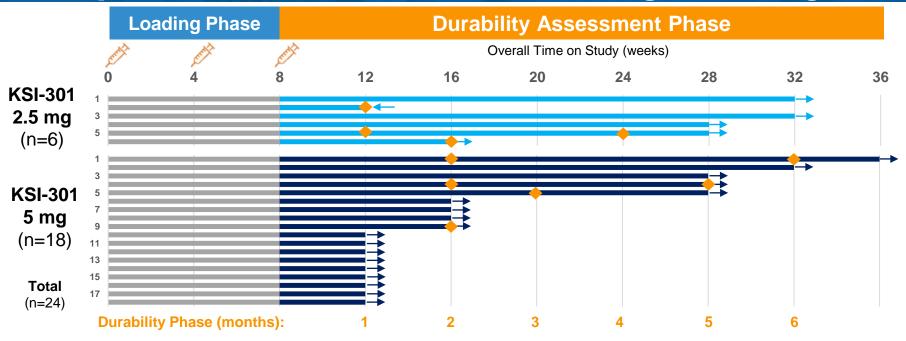
WEEK 22 NPDR (DRSS 53)


Case Example KSI-301 5 mg 3 loading doses & no re-treatment for 14 weeks

- All patients have improved (40%) or maintained (60%) DR severity level
- No patient developed a PDR event

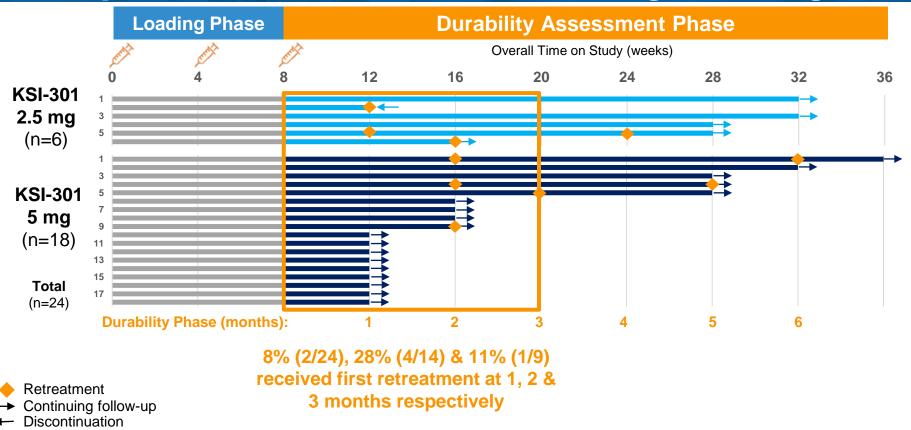
Meaningful DRSS score improvement (PDR to NPDR; 2-steps) sustained 14 weeks after last loading dose

Includes only randomized patients that reached Week 12 and have gradable color fundus photos by the data cutoff date of 10 Oct 2019 DR= Diabetic Retinopathy; PDR= Proliferative DR; NPDR= Non-Proliferative DR; DRSS = DR Severity Scale; DRSS 53 = Severe NPDR; DRSS 65 = Moderate PDR; need for panretinal photocoagulation or vitrectomy

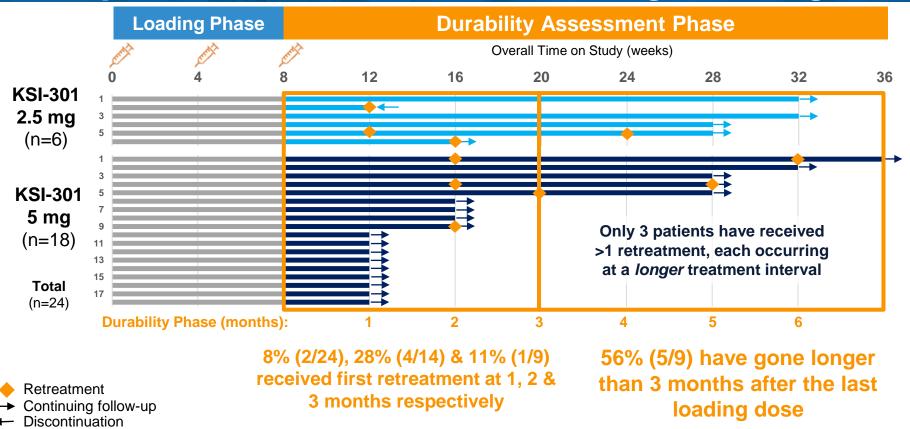

Efficacy of KSI-301 in RVO change from baseline to week 16 in mean BCVA & OCT

Interim data. Includes only randomized patients that reached Week 16 visit by the data cutoff date of 10 Oct 2019; 2.5 & 5 mg doses pooled. Datapoints include one subject that discontinued after Week 12. Error bars represent standard error of the mean. OCT CST values are site reported. BCVA= best corrected visual acuity; OCT= optical coherence tomography; CST= central subfield thickness

n= 15 Patients reaching Week 16 visit by data cutoff


KSI-301 in RVO: emerging durability data show potential for 2 to 3 month or longer dosing

Retreatment
 Continuing follow-up
 Discontinuation

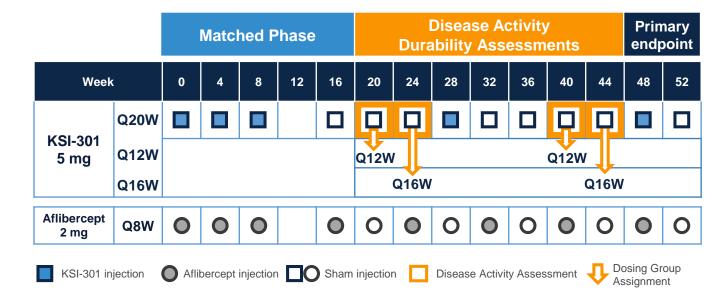

Interim data. Includes only randomized patients that reached the first retreatment opportunity (Week 12 visit) by the data cutoff date of 10 Oct 2019. Each bar represents an individual patient.

KSI-301 in RVO: emerging durability data show potential for 2 to 3 month or longer dosing

Interim data. Includes only randomized patients that reached the first retreatment opportunity (Week 12 visit) by the data cutoff date of 10 Oct 2019. Each bar represents an individual patient.

KSI-301 in RVO: emerging durability data show potential for 2 to 3 month or longer dosing

Interim data. Includes only randomized patients that reached the first retreatment opportunity (Week 12 visit) by the data cutoff date of 10 Oct 2019. Each bar represents an individual patient.


Safety of KSI-301: multiple-dose exposure is well-tolerated with no intraocular inflammation

113	316	Frentst	Eren Erente	ET ET ET	
Subjects dosed in Phase 1a+1b	Total doses given in Phase 1a+1b	104 At Day 1	99 At Week 4	86 At Week 8	
		Phase 1b subjects with # of loading doses received			

- No intraocular inflammation or ocular SAEs in the study eye reported to date
- No drug-related AEs or drug-related SAEs reported to date
- Most AEs were assessed as mild and are consistent with profile of intravitreal anti-VEGFs
- 8 non-ocular SAEs that were not drug-related have been reported in 4 subjects:
 - One 92 y/o RVO subject with hospitalization related to a pre-existing condition that resulted in death
 - One 66 y/o RVO subject with hospitalization related to dizziness
 - One 43 y/o DME subject with hospitalization related to a pre-existing condition
 - One 56 y/o DME subject with hospitalization related to a pre-existing condition

Now Recruiting: Pivotal Phase 2 DAZZLE Study Dosing with KSI-301 in wet AMD as infrequently as every 20 weeks

- ~400 treatment naïve wAMD patients
- Randomized study vs aflibercept
- US & EU study sites
- KSI-301 dosing: every 12, 16, or 20 weeks depending on prespecified disease activity assessments*

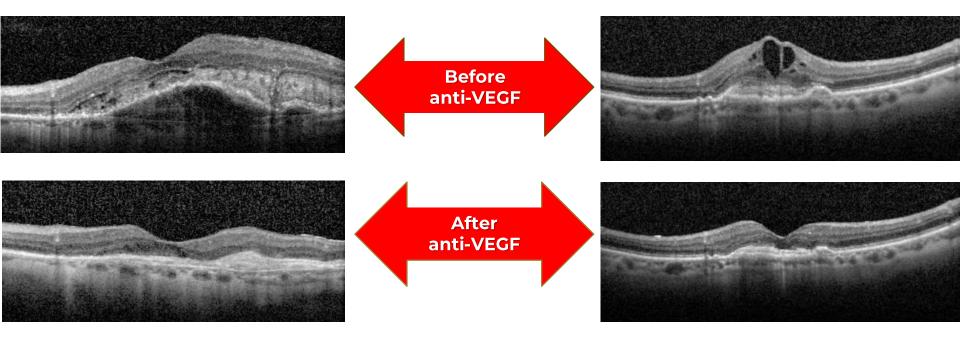
Conclusion: KSI-301 is Demonstrating Promising Safety, Efficacy and Durability

- Antibody Biopolymer Conjugates (ABCs) are a new design platform for long durability intravitreal medicines
- KSI-301 (anti-VEGF ABC) has achieved important development milestones
 - Excellent Safety: zero cases of intraocular inflammation after 300+ doses
 - Strong Efficacy: across 3 major phenotypically variable retinal diseases wet AMD, DME/DR & RVO
 - Remarkable Biological Durability: majority of treated eyes extended to 4 months or beyond without retreatment after 3 loading doses. Potential is being demonstrated for:
 - 3 to 5+ month interval in wAMD
 - o 3 to 5+ month interval in DME
 - $_{\odot}$ 2 to 3+ month interval in RVO
- Next steps
 - Phase 1b study has been extended to 18 months to collect additional durability outcomes
 - Pivotal 'DAZZLE' study of KSI-301 vs aflibercept in treatment-naïve wet AMD now recruiting

Acknowledgements

Principal Investigators

- Mark Barakat, MD
- Brian Berger, MD
- David Boyer, MD
- David Brown, MD
- Pravin Dugel, MD
- David Eichenbaum, MD
- Arshad Khanani, MD
- Ted Leng, MD
- Sunil Patel, MD, PhD
- Carl Regillo, MD
- Mark Wieland, MD
- Charles Wykoff, MD, PhD

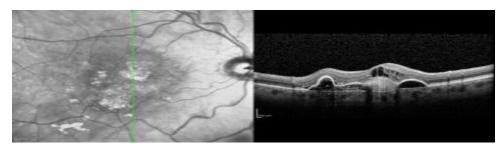

Kodiak Sciences

- Pablo Velazquez-Martin, MD
- Desiree Beutelspacher
- Amy Duguay, BS
- Hong Liang, PhD
- Bryce Miller, MPA
- Joel Naor, MD MSc
- Almas Qudrat, MSc
- Jason Ehrlich, MD, PhD
- Victor Perlroth, MD

CARL REGILLO, M.D.

Chief, Retina Service Wills Eye Hospital

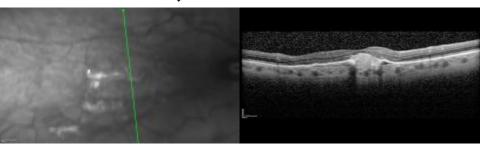
Current Neovascular AMD Treatment Intravitreal VEGF Inhibition



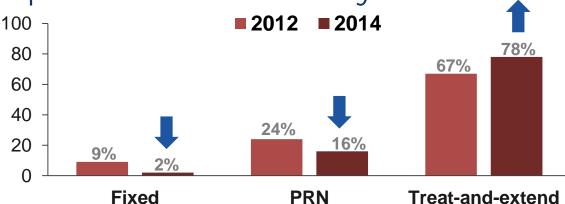
Optimizing Outcomes in nAMD

- Goal: <u>Achieve</u> & <u>maintain</u> best vision
- Disease control
 - Obtaining and maintaining a dry macula
 - Minimizing signs of exudation
 - Preventing CNV growth
 - Least amount of anti-VEGF treatments (and visits)

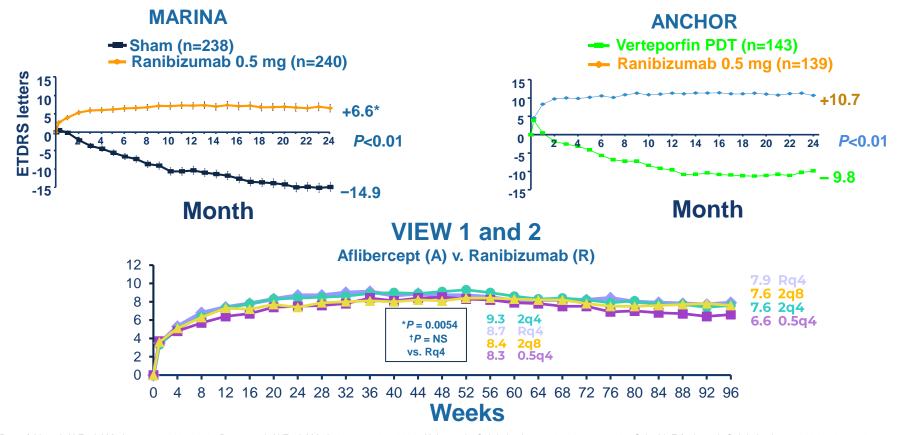
Neovascular AMD Therapy Induction-Maintenance


Before Anti-VEGF Rx

Induction (1-3 Injections)



Maintenance (Disease Control)


Maintenance Dosing Regimens

• Regimens:

- Continuous-Fixed ("Monthly/bimonthly")
- Discontinuous-Variable ("Pro Re Nata": PRN)*
- Continuous-Variable ("Treat & Extend": TAE)*
- Clinical practice: ASRS Surveys

Fixed Frequent Dosing

Individualized Anti-VEGF Therapy

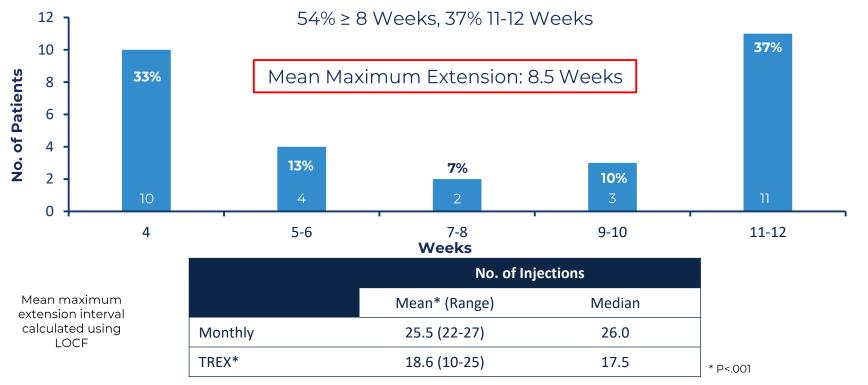
• Why:

- Avoid over treatment
- Safer and more cost effective

• How:

- Pro Re Nata (PRN) "As needed"
- "Treat and Extend"

• Goal:


- Suppress CNV growth and secondary exudation
- Frequent OCT imaging to assess disease control

Wills Eye Long-term TAE Study

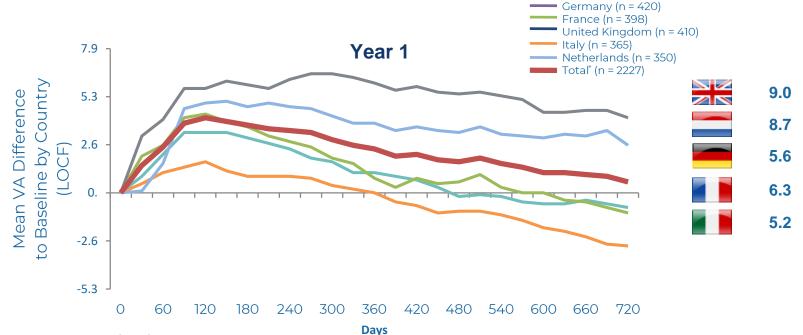
- Treatment naïve neovascular AMD (N=212)
- Treat and extend regimen: Ranibizumab or bevacizumab
- Results (1-3 yrs):
 - Mean visual acuity change: 10.7-13.6 letters gained
 - Proportion eyes > 3 lines gained: 30.6 36.3 %
 - Mean # injections (yrs 1/2/3): 7.6 /5.7/5.8

TREX Extension Interval at 2 Years

Approximate No. of Rx: 10 in Year 1 and 8 in Year 2 (with monthly X 3 load in Year 1)

Wykoff et al. *Ophthalmology* 2015;122(12):2514-2522 Wykoff et al. *Ophthalmol Retina* 2017;1(4):314-321 Abbreviation LOCF: Last Observation Carried Forward

Real World Data Most Patients With Wet AMD Receive ~5 Injections per Year


	Study Population	Injection Duration, Year	Mean Injection Rate	
Medicare analysis ¹	459,237	1	4.3	
LUMINOUS ²	4,437	1	4.3-5.5	
Retrospective claims analysis ³	11,688	1	4.5-6.8	
Retrospective claims analysis ⁴	53,621	1	4.6-6.9	

- 1. Lad EM, et al. Am J Ophthalmol. 2014;158(3):537-543.e2.
- 2. Holz FG, et al. Br J Ophthalmol. 2013;97(9):1161-1167.
- 3. Kiss S, et al. Ophthalmic Surg Lasers Imaging Retina. 2014;45(4):285-291.
- 4. Holekamp NM, et al. Am J Ophthalmol. 2014;157(4):825-833.e1.

AURA Study

Real-life use of anti-VEGF therapy is associated with poorer visual outcomes compared with clinical trial outcomes

*Only countries meeting or exceeding enrollment target (n = 444) were included.

Holz FG, et al. Br J Ophthalmol. 2015;99(2):220-226.

Neovascular AMD Management 2019

- Individualized anti-VEGF A therapy
 - Available agents: Ranibizumab, aflibercept, bevacizumab
 - Similar efficacy, safety & durability (Mean 8-9 wks, range 1-3 months)
 - All requires indefinite, frequent treatment/evaluations
 - Treat and Extend most common and non-inferior to monthly Rx
 - Real world
 - Relative under treatment still prevalent
 - Suboptimal outcomes beyond 2 years in most studies
 - Early detection = better vision but not less treatment
- Major unmet need = More durable anti-VEGF
 - Decreased burden: Treatment, evaluations, risk
 - Better long-term visual outcomes

Extending Anti-VEGF Durability

- New anti-VEGF agents:
 - Brolucizumab
 - Abicipar*
 - Conbercept*+
 - KSI-301*

Current and Emerging Anti-VEGF Agents

Drug	bevacizumab	aflibercept	ranibizumab	conbercept	brolucizumab	abicipar pegol	KSI-301
Format ¹⁻⁵	Full antibody (IgG1)	VEGFR1/2-EFC fusion protein	Fab fragment	VEGFR1/2-	Single-chain antibody fragment	DARPIN	Antiody biopolymer conjugate
Molecular structure			C. C.1		Ü		
Molecular weight ¹⁻	149 kDa	97-115 kDaª	48 kDa	143 kDa	26 kDa	34 kDa	950 kDa
Clinical dose ^{2,3,5-7}	1.25 mg	2.0 mg	0.3-0.5 mg	0.5-2.0 mg	6.0 mg	2.0 mg	5.0 mg
Equivalent molar dose	0.4	Reference	0.5	1.0	11.2	2.9	14
Dissociation Constant	1100 pM	1 pM	192 pM	0.1 pM	104 pM	4 pM	6.75 pM

1. Avastin [package insert]. South San Francisco, CA: Genentech, Inc.; 2016; 2. Eylea [package insert]. Tarrytown, NY: Regeneron Pharmaceuticals, Inc.; 2017; 3. Lucentis [package insert]. South San Francisco, CA: Genentech, Inc.; 2017; 4. Holz FG, et al. *Ophthalmology*. 2016;123(5):1080-1089; 5. Dugel PU, et al. *Ophthalmology*. 2017;124(9):1296-1304; 6. CATT Research Group. *N Engl J Med*. 2011;364(20):1897-1908; 7. IVAN Study Investigators. *Ophthalmology*. 2012;119(7):1399-1411

Brolucizumab was recently approved in US

HIGHLIGHTS OF PRESCRIBING INFORMATION

These highlights do not include all the information needed to use BEOVU safely and effectively. See full prescribing information for BEOVU.

BEOVU® (brolucizumab-dbll) injection, for intravitreal injection Initial U.S. Approval: 2019

------DOSAGE AND ADMINISTRATION-------BEOVU is administered by intravitreal injection. The recommended dose for BEOVU is 6 mg (0.05 mL of 120 mg/mL solution) monthly (approximately every 25-31 days) for the first three doses, followed by one dose of 6 mg (0.05 mL) every 8-12 weeks (2.2).

-----DOSAGE FORMS AND STRENGTHS-----

Injection: 6 mg/0.05 mL solution for intravitreal injection in a single-dose vial (3).

-----CONTRAINDICATIONS------

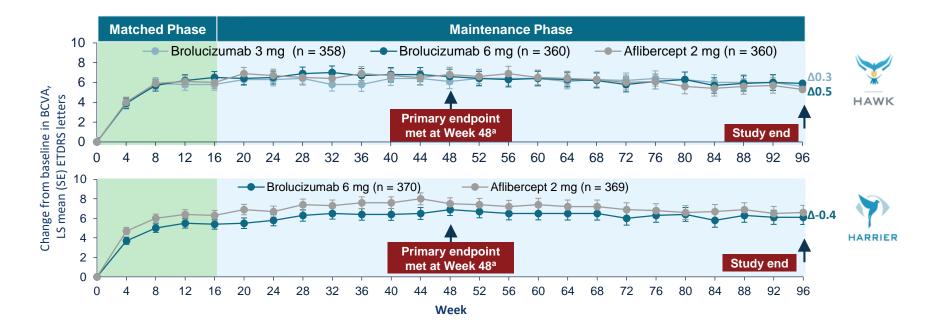
- Ocular or periocular infections (4.1).
- Active intraocular inflammation (4.2).
- Hypersensitivity (4.3).

------WARNINGS AND PRECAUTIONS------

- Endophthalmitis and retinal detachments may occur following intravitreal injections. Patients should be instructed to report any symptoms suggestive of endophthalmitis or retinal detachment without delay (5.1).
- Increases in intraocular pressure (IOP) have been seen within 30 minutes of an intravitreal injection (5.2).
- There is a potential risk of arterial thromboembolic events (ATE) following intravitreal use of VEGF inhibitors (5.3).

-----ADVERSE REACTIONS------

The most common adverse reactions (\geq 5%) reported in patients receiving BEOVU are vision blurred (10%), cataract (7%), conjunctival hemorrhage (6%), eye pain (5%), and vitreous floaters (5%) (6.1).


To report SUSPECTED ADVERSE REACTIONS, contact Novartis Pharmaceuticals Corporation at 1-888-669-6682 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

See 17 for PATIENT COUNSELING INFORMATION.

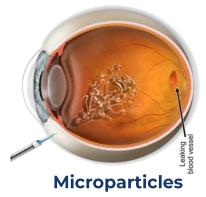
Revised: 10/2019

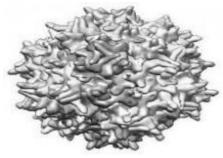
~50% on q12w at Year 1, ~40% at Year 2

BCVA Change From Baseline to Wk 96 Brolucizumab vs Aflibercept



Full analysis set LOCF. Mean differences in BCVA (brolucizumab–aflibercept, ∆). a Non-inferiority (NI) margin = 4 letters. Analyzed using ANOVA model with baseline BCVA categories (<=55, 56-70, >=71 letters), age categories (<75,≥75 years) and treatment as fixed effect factors. LS, least squares


Dugel PU et al. Presented at: The Annual Meeting of the American Academy of Ophthalmology 2018; Chicago, IL; October 27-30, 2018.


Extending Anti-VEGF Durability

- Sustained Release Implants
- Microparticles (biodegradeable polymers or hydrogels)
 - GB-102 (Sunitinib TKI)
 - Others: OTX TKI/OTX-IVT, AXT 107
- Gene therapy

Reservoir-based Port Delivery

Viral Vector Delivery

Extending Anti-VEGF Durability

• Current agents:

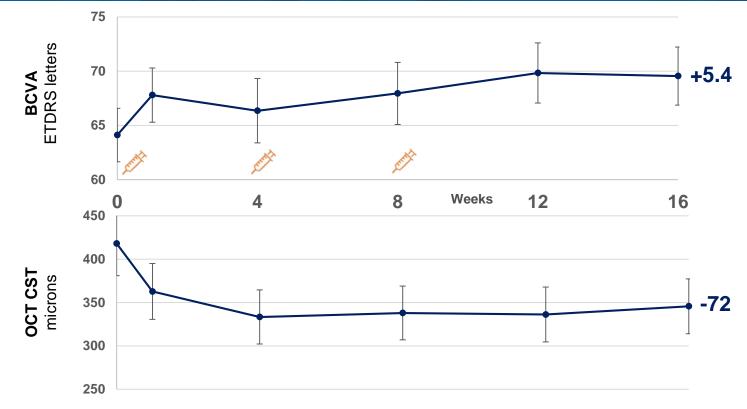
- All require frequent anti-VEGF injections
 - Mean durability 8-9 weeks (maintenance phase)
 - Range 1-3 months
- Promise:
 - Decreased burden: Patients, care givers, providers
 - Better long-term visual outcomes

DISCUSSION

Wet AMD

KSI-301 Phase 1b

insight into durability among treatment naïve subjects


Randomized, open label study to evaluate multidose safety, efficacy & durability (n=105) **RVO** (n=35) **wAMD** (n=35) **DME** (n=35) Randomized 1:3 KSI-301 2.5 mg (50 μL) KSI-301 5 mg (100 μL) Loading Phase **Durability Assessment Phase** 16 32 36 Fixed Treatment 8 12 20 24 28 Weeks: 0 4 **Re-Treatment** Treatment Schedule: As Needed

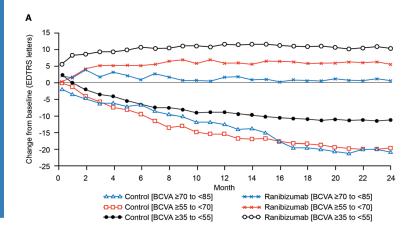
wAMD = wet age-related macular degeneration; DME = diabetic macular edema; RVO = retinal vein occlusion; Clinicaltrials.gov ID: NCT03790852

KSI-301 Phase 1b Baseline Characteristics

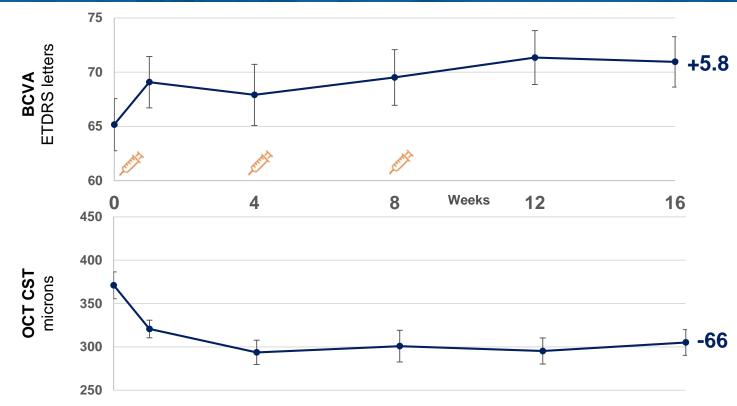
Variable	wAMD Cohort (n=35)
Age, mean (SD), years	77.2 (11.0)
Gender, n (%), female	25 (71.4)
Race, n (%), White	32 (91.4)
BCVA, mean (SD), ETDRS letters	64.5 (11.1)
BCVA, Snellen 20/40 or better, n (%)	14 (40.0)
OCT CST, mean (SD), microns	426 (176)

Efficacy of KSI-301 in Wet AMD change from baseline to week 16 in mean BCVA & OCT

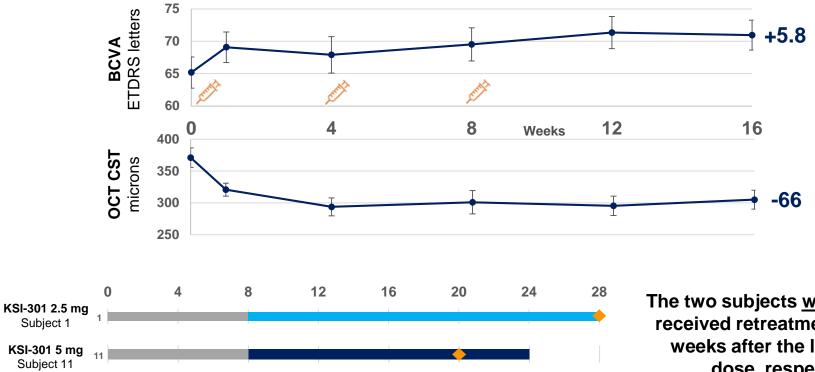
Interim data. Includes only randomized patients that reached Week 16 visit by the data cutoff date of 10 Oct 2019; 2.5 & 5 mg doses pooled. Error bars represent standard error of the mean. OCT CST values are site reported. BCVA= best corrected visual acuity; OCT= optical coherence tomography; CST= central subfield thickness


n= 25 Patients reaching Week 16 visit by data cutoff

Visual Acuity Improvements Impact of Baseline BCVA


Study	Arm	Ν	Mean Baseline BCVA	Mean ∆BCVA at Week 16
KSI-301 Ph1b	KSI-301	25	64.5 ± 11.1	5.4
HAWK	Brolu 3mg	358	61.0 ± 13.6	5.7
	Brolu 6mg	360	60.8 ± 13.7	6.5
	Eylea 2mg	360	60.0 ± 13.9	6
HARRIER	Brolu 6mg	370	61.5 ± 12.6	5.4
	Eylea 2mg	370	60.8 ± 12.9	6.3

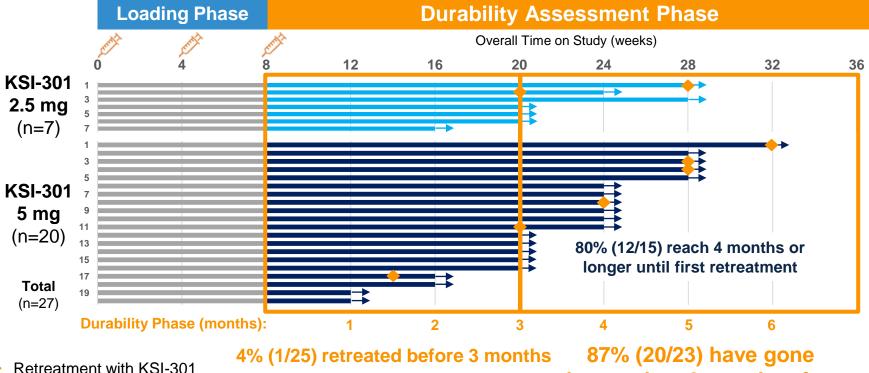
Visual benefit versus visual gain: what is the effect of baseline covariants in the treatment arm relative to the control arm? A pooled analysis of ANCHOR and MARINA


Efficacy of KSI-301 in Wet AMD in 23/25 subjects <u>without high PEDs</u> change from baseline to week 16 in mean BCVA & OCT

Interim data. Includes only randomized patients that reached Week 16 visit by the data cutoff date of 10 Oct 2019; 2.5 & 5 mg doses pooled. Error bars represent standard error of the mean. OCT CST values are site reported. BCVA= best corrected visual acuity; OCT= optical coherence tomography; CST= central subfield thickness. High PED defined as presence of a PED with baseline CST ≥500 microns.

n= 23 Patients without high PEDs reaching Week 16 visit by data cutoff

Efficacy of KSI-301 in Wet AMD in 23/25 subjects without high PEDs change from baseline to week 16 in mean BCVA & OCT

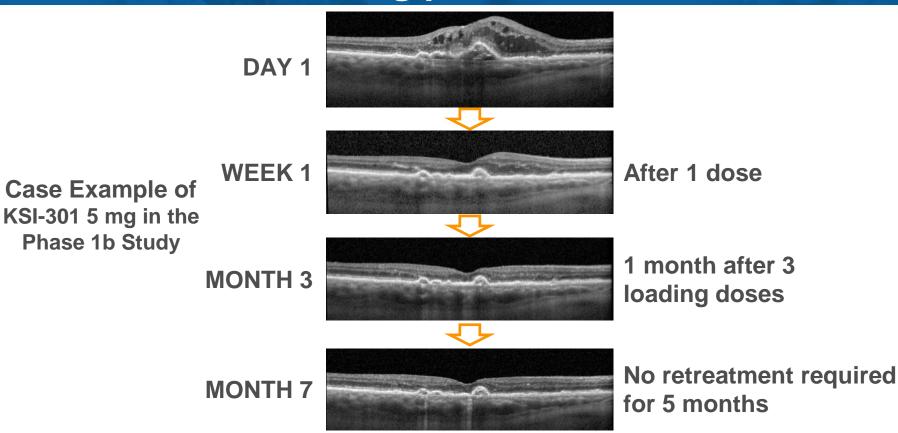


The two subjects with high PEDs received retreatment 20 and 12 weeks after the last loading dose, respectively

Interim data. Includes only randomized patients that reached Week 16 visit by the data cutoff date of 10 Oct 2019; 2.5 & 5 mg doses pooled. Error bars represent standard error of the mean. OCT CST values are site reported. BCVA= best corrected visual acuity: OCT= optical coherence tomography: CST= central subfield thickness

Patients without high PEDs reaching n= Week 16 visit by data cutoff

KSI-301 in wAMD: Durability Assessment Emerging data support 3 to 5+ month durability


Continuing follow-up

10% (2/20) retreated at 3 months

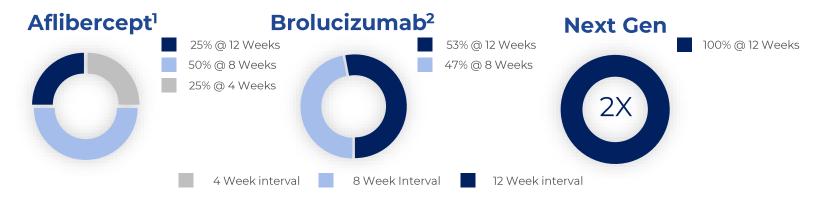
87% (20/23) have gone longer than 3 months after the last loading dose

Interim data. Includes patients that reached the first retreatment opportunity (Week 12 visit) by the data cutoff date of 10 Oct 2019. Each bar represents an individual patient. All depicted patients continue to be followed (no discontinuations)

Is it realistic to dose KSI-301 every 5 months after the loading phase in wAMD?

Extended durability continues to be an unmet need in anti-VEGF therapy

	Maintenance Phase				
	4 Weeks	8 Weeks	12 Weeks	16 Weeks	20 Weeks
Aflibercept	(()))))))))))))))))))))))))))))))))))))				
Brolucizumab					

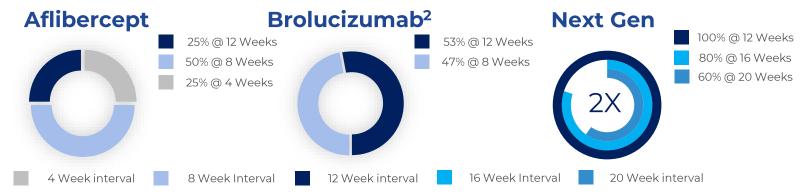


1. According to current clinical practice

2. According to the interval results used from the Phase 3 wAMD trials HAWK and HARRIER

A next generation biologic should bring nearly all patients to a 12-week interval

	Maintenance Phase				
	4 Weeks	8 Weeks	12 Weeks	16 Weeks	20 Weeks
Aflibercept					
Brolucizumab					
Next Gen		.			

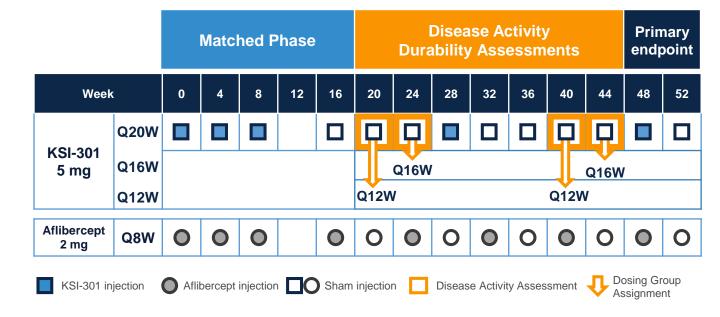


1. According to current clinical practice

2. According to the interval results used from the Phase 3 wAMD trials HAWK and HARRIER

A biologic bringing nearly all patients to 12 weeks *and* a majority to 4- and 5- months would be potentially disruptive

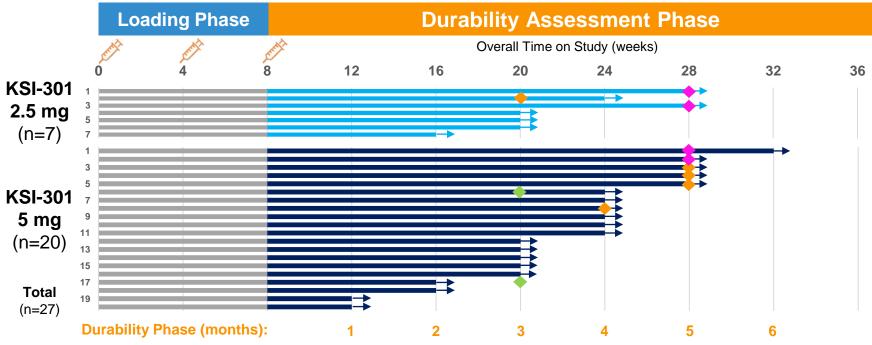
	Maintenance Phase				
	4 Weeks	8 Weeks	12 Weeks	16 Weeks	20 Weeks
Aflibercept					
Brolucizumab					
Next Gen		.			



1. According to current clinical practice

2. According to the interval results used from the Phase 3 wAMD trials HAWK and HARRIER

Now Recruiting: Pivotal DAZZLE wAMD Study Dosing with KSI-301 as infrequently as every 20 weeks


- ~400 treatment naïve wAMD patients
- Randomized study vs aflibercept
- US & EU study sites
- KSI-301 dosing: every 12, 16, or 20 weeks depending on prespecified disease activity assessments*

How do DAZZLE Study Disease Activity Assessment Criteria Compare to Phase 1b?

Parameters	Phase 1b Study	DAZZLE study	Change
Visual <i>and</i> anatomical	Increase in CST \geq 75 µm with a decrease in BCVA of \geq 5 letters compared to Week 12, <i>OR</i>	Increase in CST \geq 50 µm with a decrease in BCVA of \geq 5 letters compared to Week 12, <i>OR</i>	Tighter CST control (25 microns)
Visual only	Decrease in BCVA of ≥ 10 letters compared to the best prior BCVA, due to worsening wAMD activity, <i>OR</i>	Decrease in BCVA of \geq 10 letters compared to the best prior BCVA, due to worsening wAMD activity, <i>OR</i>	No change
visual only	Decrease in BCVA of > 5 letters compared to Day 1, due to worsening wAMD activity	N/A	Eliminated for simplicity (not needed)
Anatomical	N/A	Increase of ≥ 75 microns compared to Week 12, <i>OR</i>	Added two anatomical-
only	N/A	New Macular Hemorrhage	only criteria

KSI-301 in wAMD: Durability Assessment Ph1b patient hypothetical retreatments based on DAZZLE criteria

12-week minimum interval dosing

- 20-week maximum interval dosing
- Retreatment criteria met
- Continuing follow-up

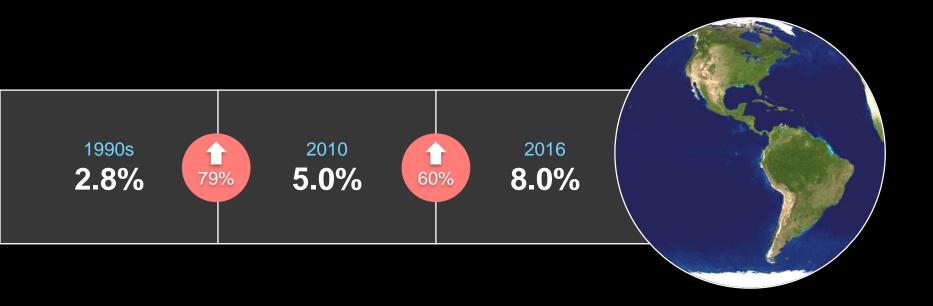
CHARLES WYKOFF, M.D., PH.D.

Director of Research Retina Consultants of Houston

Retinal Vascular Diseases

Scope of the Problem

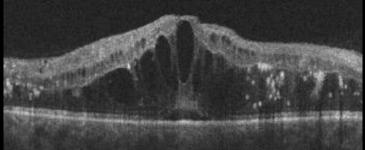
Exudative Retinal Diseases

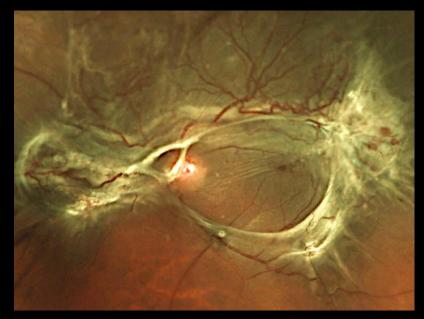

	Avg age of onset	Prevalence* (MM)	Disease overview	
Wet AMD	70 yrs	1.9	A leading cause of blindness in the elderly	
Diabetic Macular Edema	60 yrs	1.9	Most frequent cause of blindness in middle aged adults	9 ,
Retinal Vein Occlusion	55 yrs	2.5	Second most common cause of vision loss due to vascular disease	
Diabetic Retinopathy w/o DME	45-50 yrs	5.1	Common cause of vision loss among diabetics classified as NPDR vs PDR	

wAMD = wet AMD; DME = Diabetic Macular Edema; BRVO = Branch Retinal Vein Occlusion; CRVO = Central Retinal Vein Occlusion; NPDR = Non-Proliferative Diabetic Retinopathy; PDR = Proliferative Diabetic Retinopathy

Note: Numbers may be rounded; Source: epidemiology data based on multiple literature sources, diagnosis rates based on Datamonitor Report, DRG Market Forecast Assumptions; other sources: Regeneron USA: 230k anti-VEGF treated patients, Roche USA: 200k patients under ophtha care https://www.gene.com/stories/retinal-diseases-fact-sheet and DRG Market Forecast Assumptions; other sources: Regeneron USA: 230k anti-VEGF treated patients, Roche USA: 200k patients under ophtha care https://www.gene.com/stories/retinal-diseases-fact-sheet and DRG Market Forecast Assumptions *US, EUS, Japan

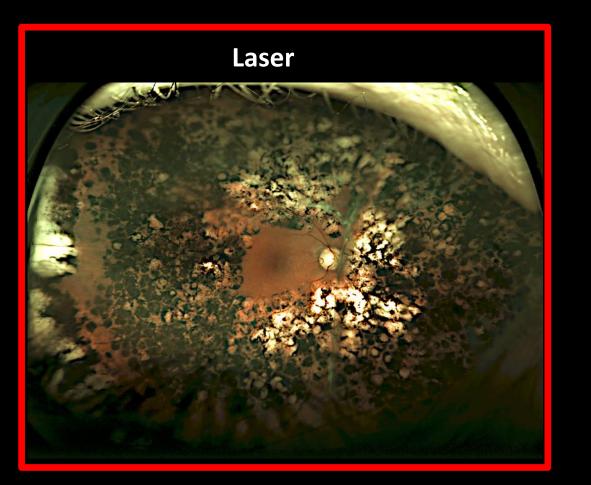
Global Report on Diabetes (2016)


World Health Organization



DR = When Not If

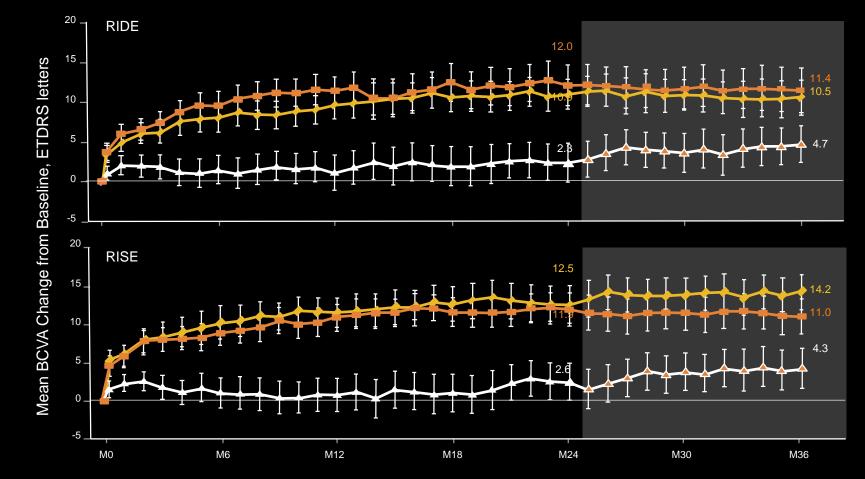
6



Treatment Options

Aflibercept

Ranibizumab

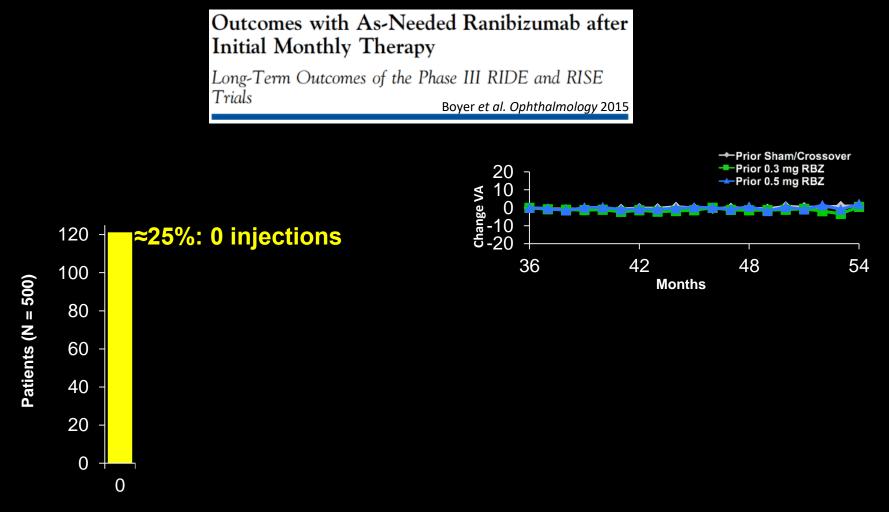


Dexamethasone

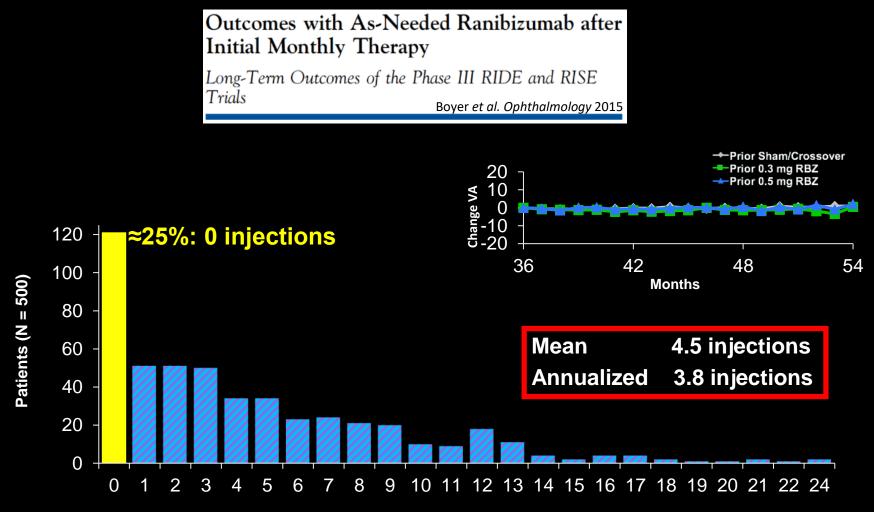
Triamcinolone

RIDE/RISE Phase 3 Trials

Sham/0.5 mg


<1

Ranibizumab 0.5 mg

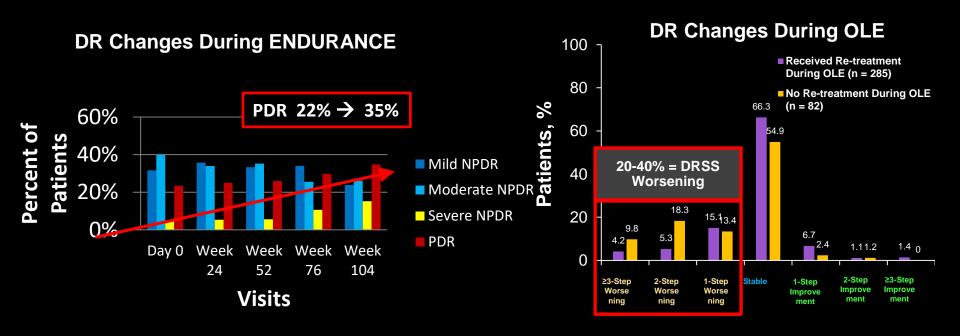

Sham

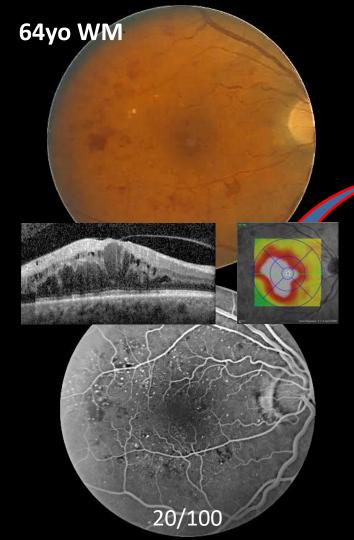
41

Ranibizumab 0.3 mg

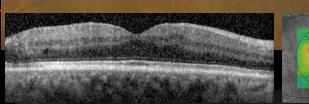


Number of Ranibizumab Injections During OLE (mean follow-up: 14.1 months)

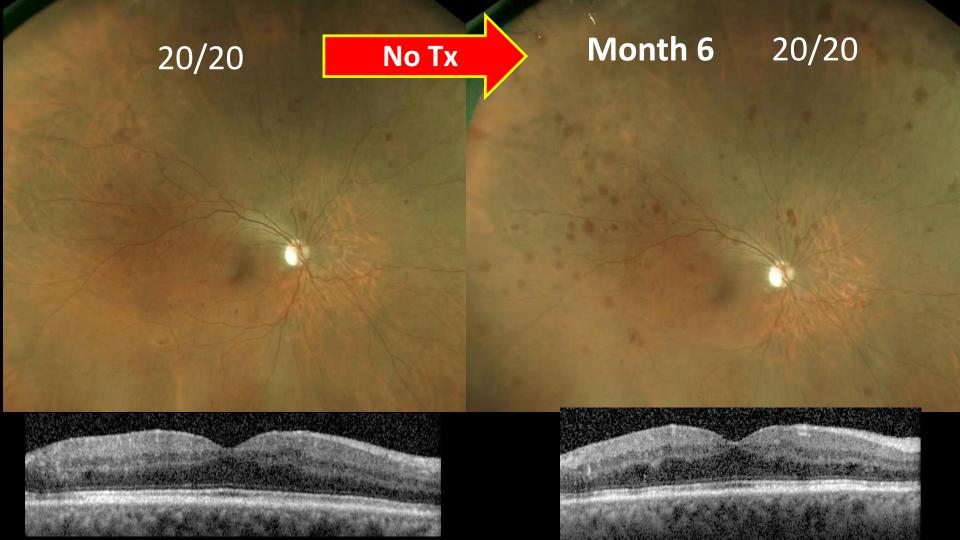


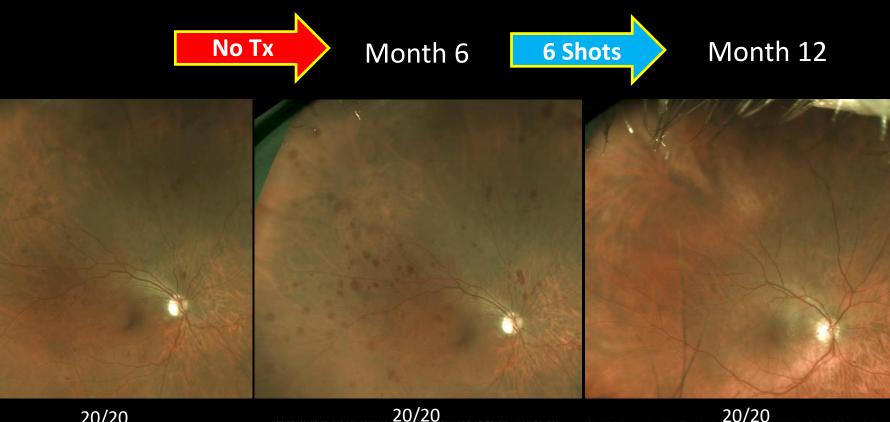

Number of Ranibizumab Injections During OLE (mean follow-up: 14.1 months)

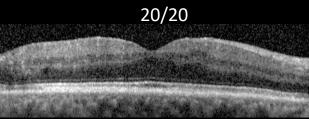
Long-Term Management of DME & DR *Treatment Burden in Years 4-5 of Management*

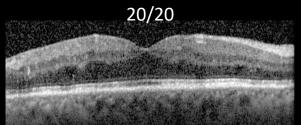


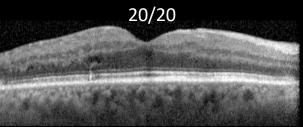
Long-Term DR Outcomes




3 years Q4-12 Week Anti-VEGF Dosing

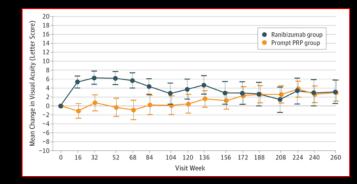





20/20

Protocol S

PRP Arm

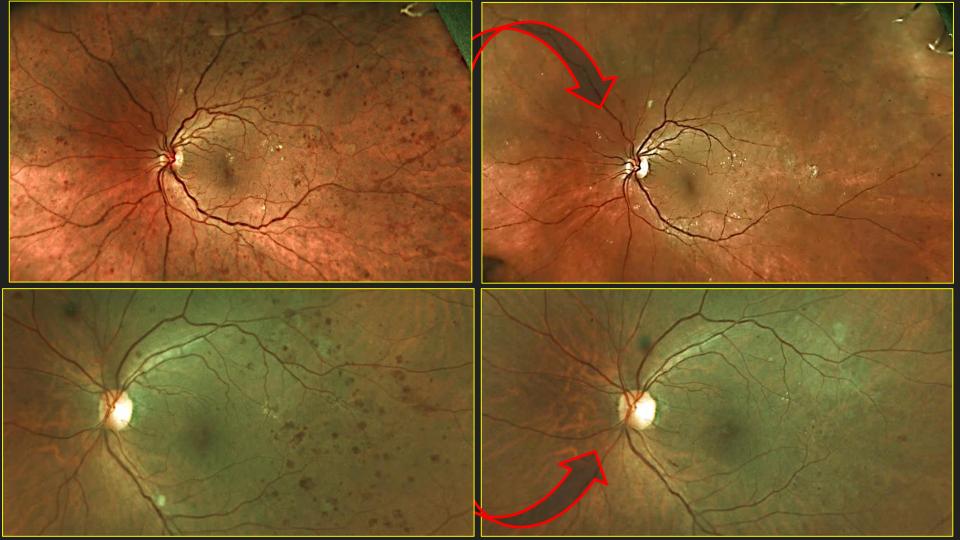

- 49% = single PRP session
- Years 3-5: 11% additional PRP
- Mean 5.4 ranibizumab injections
- Median visits = 21

Anti-VEGF Arm

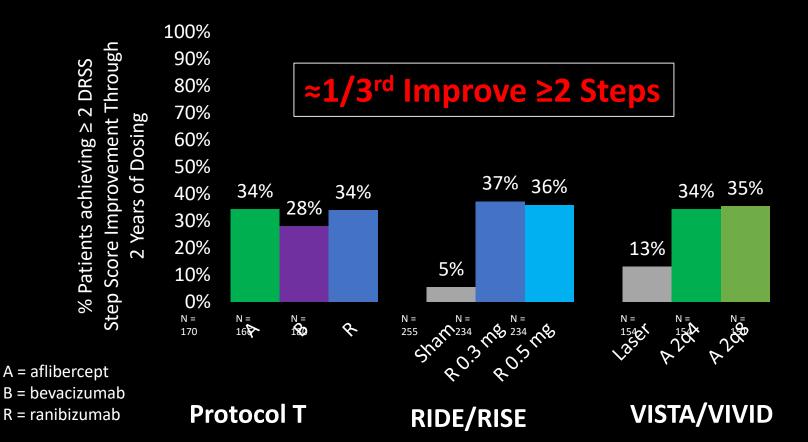
- **19.2 mean injections through 5-years**
 - Year (mean # IVI)
 - 1 (7.1) 2 (3.3) 3 (3.0) 4 (2.9) 5(2.9)
- Years 3-5: 63-73% required injections
- Median visits = 43

JAMA Ophthalmology | Original Investigation

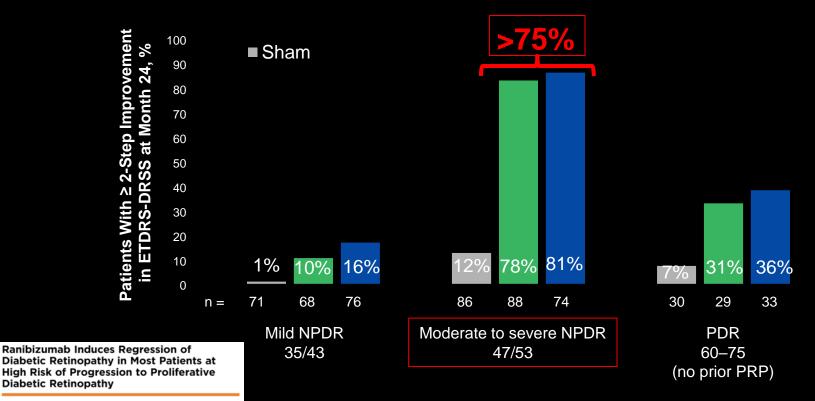
Five-Year Outcomes of Panretinal Photocoagulation vs Intravitreous Ranibizumab for Proliferative **Diabetic Retinopathy** A Randomized Clinical Trial



	No. (%)			
Variable	Ranibizumab Group PRP Group		 Adjusted Difference, % (95% CI)^a 	
Diabetic Retinopathy on Fundus Photographs at 5 y^b				
No. of eyes	90	93	NA	
Eyes without PDR (≤level 60)	39 (43)	34 (37)	NA	
Eyes with regressed NV (level 61A)	25 (28)	31 (33)	NA	
Eyes with active NV (≥level 61B)	26 (29)	28 (30)	NA	
Eyes improving from PDR (≥level 61) to NPDR (≤level 53)	30 (33)	NA	NA	
Eyes without retinopathy (≤level 20)	9 (10)	NA	NA	
Eyes improving ≥2 steps in diabetic retinopathy severity on fundus photographs at 5 y ^c	41 (46)	NA	NA	

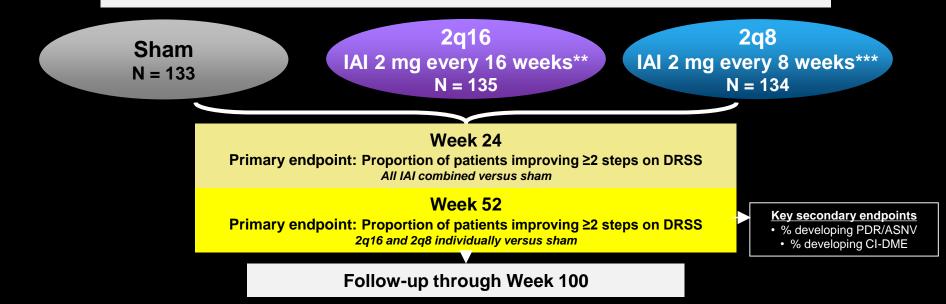

Patients with active NV at year 5 = identical in both arms

Protocol S 5-Year Data. JAMA Ophthalmology. 2018


Shift Towards DR

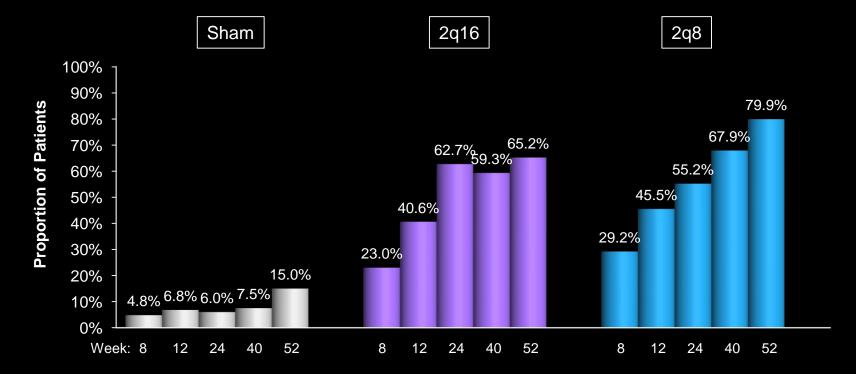
DRSS Improvements with Anti-VEGF Dosing

DR Improvements by Baseline DR Severity

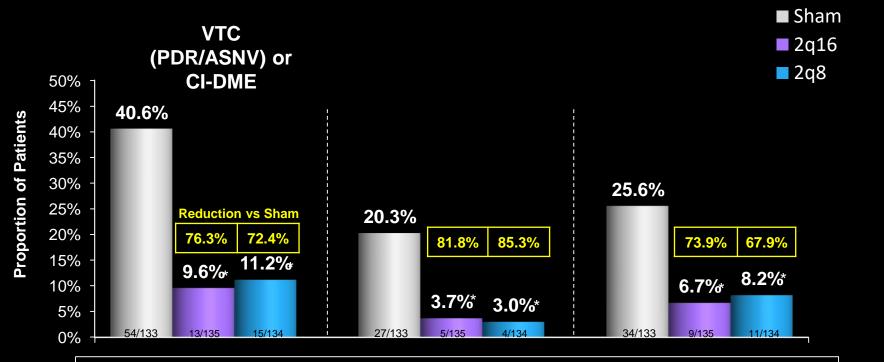

Charles C. Wykoff, MD, PhD,¹ David A. Eichenbaon, MD,² Daviel B. Roth, MD,³ Lauren Hill, MS,⁴ Anne E. Fung, MD,⁴ Zdenka Haskova, MD, PhD⁴

Study Design

109


Phase 3, double-masked, randomized study of efficacy & safety of IAI in patients with moderately severe to severe NPDR (DRSS level 47 and 53) $N = 402^*$

*Patients were stratified by baseline DRSS level; "After 3 initial monthly doses and 1 q8 interval; ***After 5 initial monthly doses, flexible treatment schedule after week 52. 2q8, 2 mg every 8 weeks; 2q16, 2 mg every 16 weeks; q8, every 8 weeks; ASNV, anterior segment neovascularization; CI-DME, center-involved diabetic macular edema; DRSS, Diabetic Retinopathy Severity Score; IAI, intravitreal aflibercept injection; NPDR, nonproliferative diabetic retinopathy; PDR, proliferative diabetic retinopathy.


Proportion of Patients with ≥2-Step Improvement from Baseline in DRSS

Intravitreal Aflibercept for Moderately Severe to Severe Non-Proliferative Diabetic Retinopathy: The Phase 3 PANORAMA Study. Wykoff *et al.* Angiogenesis 2019.

Proportion of Patients Developing a Vision Threatening Complication (VTC) or Center Involved (CI)-DME through Week 52

Number needed to treat = 3 patients in order to prevent 1 prespecified VTC or CI-DME event

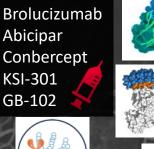
VTC = Vision threatening complication, PDR/ASNV; FAS; Sham n=133, 2q16 n=135, 2q8 n=134 Intravitreal Aflibercept for Moderately Severe to Severe Non-Proliferative Diabetic Retinopathy: The Phase 3 PANORAMA Study. Wykoff *et al.* Angiogenesis 2019.

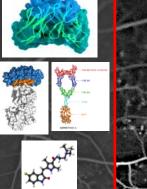
*p < 0.0003 vs. sham

111

PANORAMA

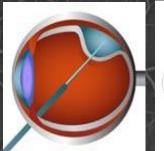
Frequent Visits Multiple Injections



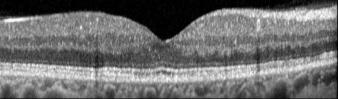

Destructive Laser

Additional Anti-VEGF Agents

New Targets



Drug Delivery Approaches



KSI-301: Improved Durability

Goals of Treatment

DISCUSSION

Diabetic Eye Disease

KSI-301 Phase 1b

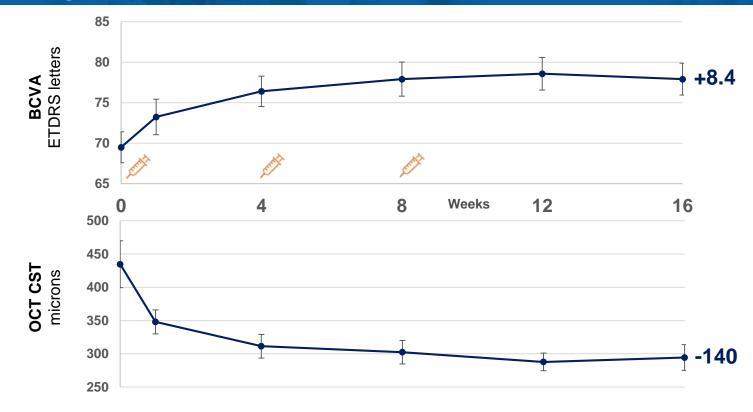
insight into durability among treatment naïve subjects

Randomized, open label study to evaluate multidose safety, efficacy & durability (n=105) **wAMD** (n=35) **RVO** (n=35) **DME** (n=35) Randomized 1:3 KSI-301 2.5 mg (50 μL) KSI-301 5 mg (100 μL) Loading Phase **Durability Assessment Phase** 32 36 Fixed Treatment 8 12 16 20 24 28 Weeks: 0 4 **Re-Treatment** Treatment Schedule: As Needed

wAMD = wet age-related macular degeneration; DME = diabetic macular edema; RVO = retinal vein occlusion; Clinicaltrials.gov ID: NCT03790852

KSI-301 Phase 1b Retreatment Criteria prespecified by disease state

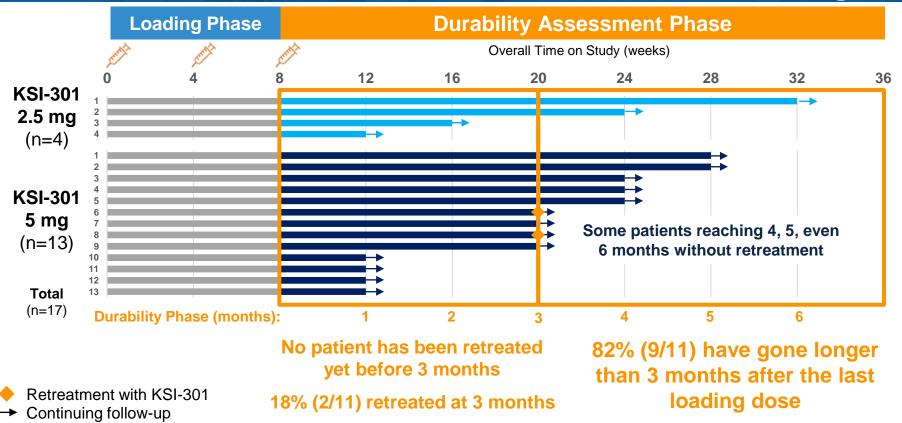
DME and RVO


- Increase in CST ≥75 µm with a decrease in BCVA of ≥ 5 letters compared to Week 12 or the prior visit, OR
- Decrease in BCVA of ≥ 10 letters compared to the best prior BCVA, due to worsening DME/RVO disease activity

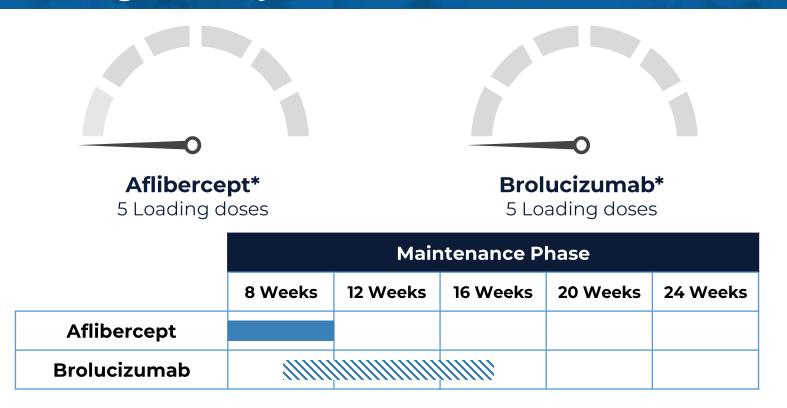
Investigators can retreat at their discretion if significant disease activity is present that does not meet the above criteria

KSI-301 Phase 1b Baseline Characteristics

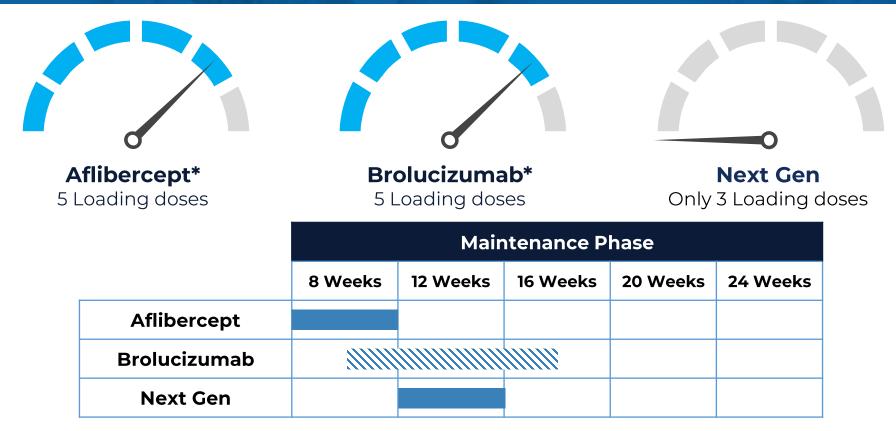
Variable	DME Cohort (n=34)				
Age, mean (SD), years	60.7 (10.4)				
Gender, n (%), female	13 (38.2)				
Race, n (%), White	28 (82.4)				
BCVA, mean (SD), ETDRS letters	66.8 (10.3)				
BCVA, Snellen 20/40 or better, n (%)	16 (47.1)				
OCT CST, mean (SD), microns	449 (109)				
DRSS Score					
35 (Mild NPDR), n (%)	2 (6)				
47 (Moderate NPDR), n (%)	23 (70)				
53 (Severe NPDR), n (%)	5 (15)				
65 (Moderate PDR), n(%)	3 (9)				


Efficacy of KSI-301 in DME change from baseline to week 16 in mean BCVA & OCT

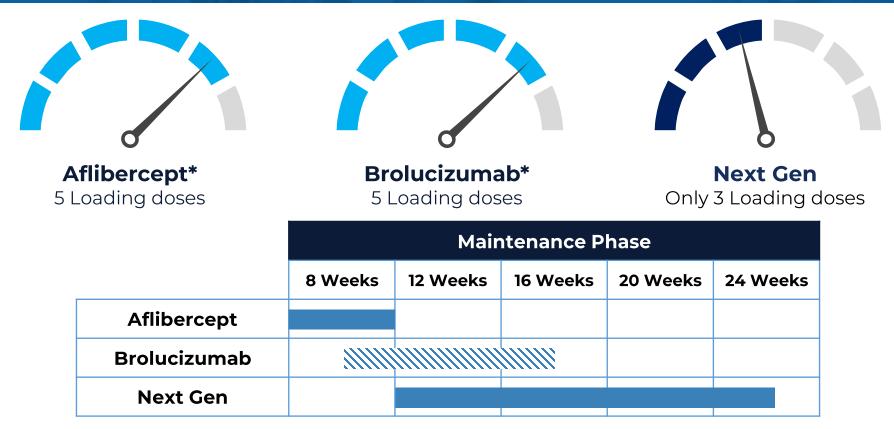
Interim data. Includes only randomized patients that reached Week 16 visit by the data cutoff date of 10 Oct 2019; 2.5 & 5 mg doses pooled. Error bars represent standard error of the mean. OCT CST values are site reported. BCVA= best corrected visual acuity; OCT= optical coherence tomography; CST= central subfield thickness


n= 12 Patients reaching Week 16 visit by data cutoff

KSI-301 in DME: 3 loading doses can provide sustained disease control of 3 months or longer

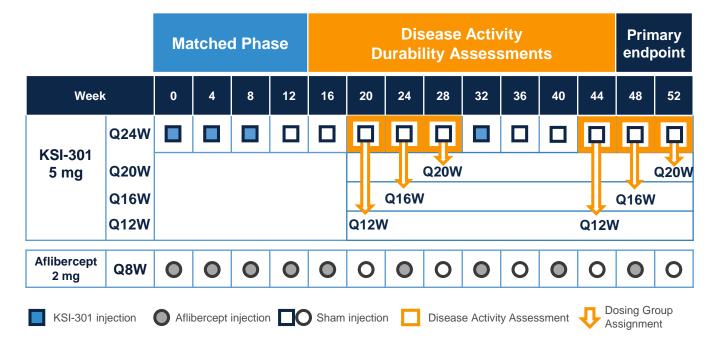

Interim data. Includes only randomized patients that reached the first retreatment opportunity (Week 12 visit) by the data cutoff date of 10 Oct 2019. Each bar represents an individual patient. All depicted patients continue to be followed (no discontinuations)

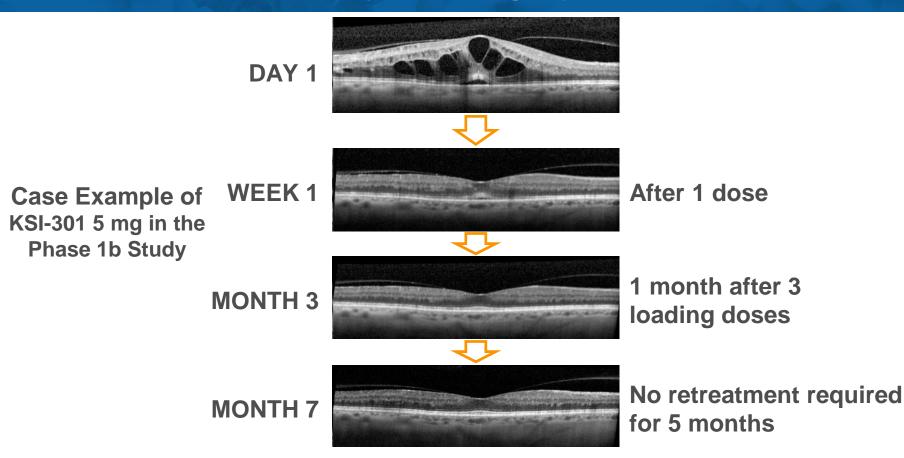
Healthcare burden to diabetic patients is increased significantly because of DME treatment


*According to dosing used in the Phase 3 DME trials for aflibercept and brolucizumab.

Reducing treatment burden should start with fewer injections during the loading phase

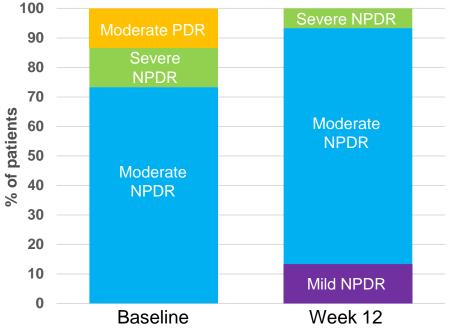
*According to dosing used in the Phase 3 DME trials for aflibercept and brolucizumab.


A next-generation DME medicine should also provide disease control for a longer time during the maintenance phase


*According to dosing used on the Phase 3 DME trials for aflibercept and brolucizumab.

KSI-301 Potential Study Design in DME Dosing with KSI-301 as infrequently as every 6 months

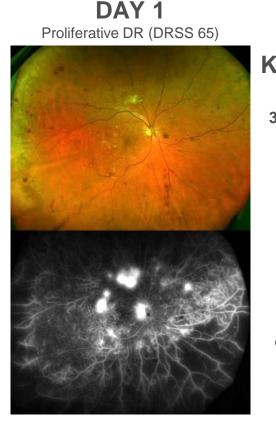
- Randomized study vs aflibercept
- Only 3 loading doses
- KSI-301 dosing: every 12, 16, 20 or 24 weeks depending on prespecified disease activity assessments*

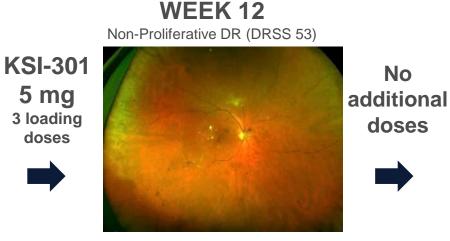


Is a treatment interval of 5 months possible in DME (after only 3 loading injections?)

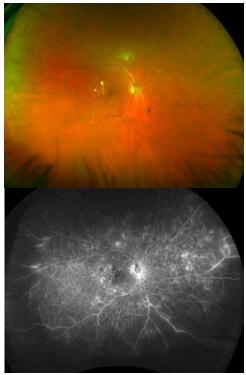
KSI-301 in DR: signs of disease modification are seen within 12 weeks

DRSS Score (n=15)


All patients improved or maintained their DRSS Score

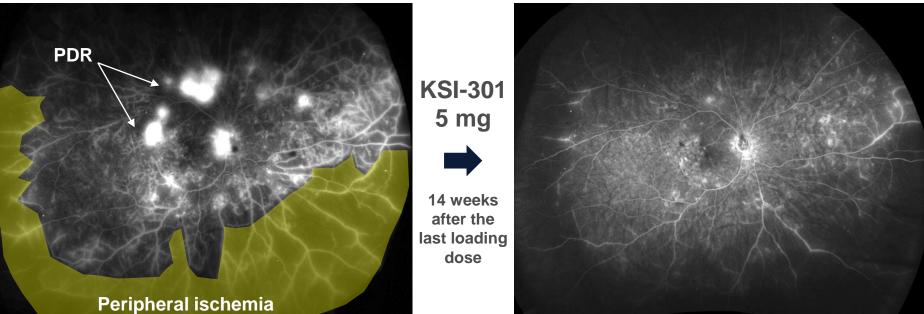

Change from Baseline in DRSS at Week 12 (n=15)	N (%)
Maintained	9 (60)
1-step improvement	2 (13)
≥2-step improvement	4 (27)

Additionally, no patient has developed a PDR event


Includes only randomized patients that reached Week 12 and have gradable color fundus photos by the data cutoff date of 10 Oct 2019 DR= Diabetic Retinopathy; PDR= Proliferative DR; NPDR= Non-Proliferative DR; DRSS = DR Severity Scale. Vision-threatening PDR defined as PDR, need for panretinal photocoagulation or vitrectomy

The sustained disease control of only 3 loading doses of KSI-301 is also seen in proliferative diabetic retinopathy

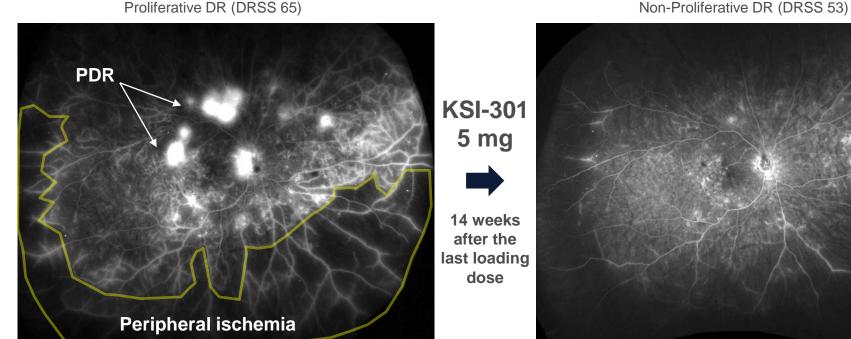
Conversion from PDR to NPDR Fast and substantial (2-step) improvement, sustained 14 weeks after only 3 loading doses with KSI-301 5 mg WEEK 22 Non-Proliferative DR (DRSS 53)



In addition to the conversion from PDR to NPDR, this patient exhibits signs of peripheral vascular reperfusion

DAY 1 Proliferative DR (DRSS 65)

WEEK 22


Non-Proliferative DR (DRSS 53)

In addition to the conversion from PDR to NPDR, this patient exhibits signs of peripheral vascular reperfusion

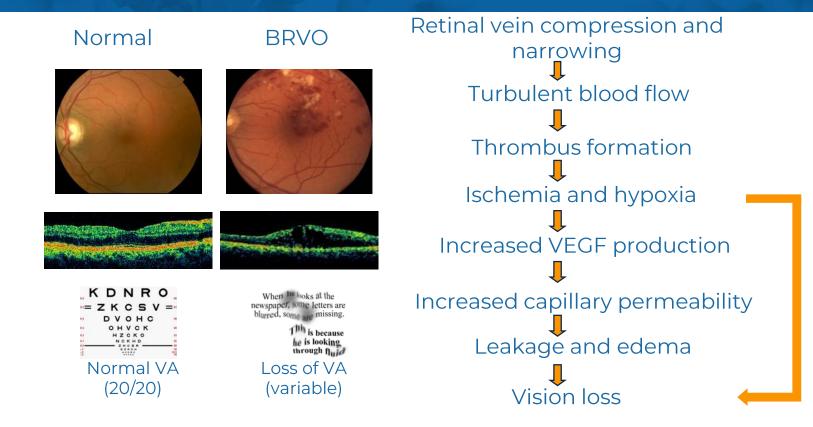
DAY 1 Proliferative DR (DRSS 65)

WEEK 22

KSI-301 Potential Study Design in NPDR No loading doses and dosing as infrequently as every 6 months

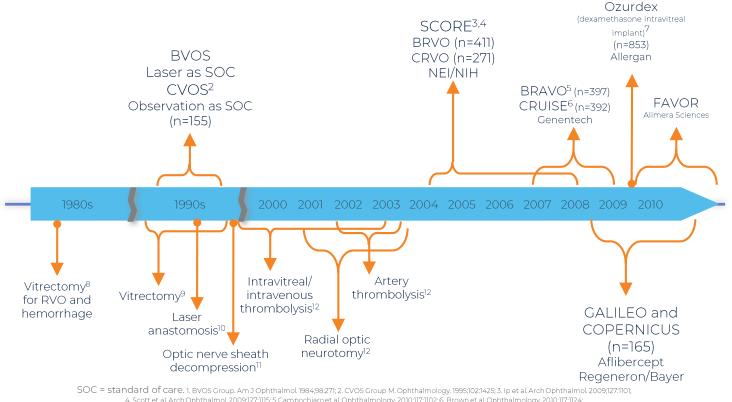
- Current standard of care is close observation
- No loading doses
- Dosing every 4 or 6 months with KSI-301

		Fixed Dosing								PE					
Week		0	4	8	12	16	20	24	28	32	36	40	44	48	52
KSI-301 5 mg	Q16W														
	Q24W														
Sha															
KSI-301 injection Sham															


ARSHAD KHANANI, M.D.

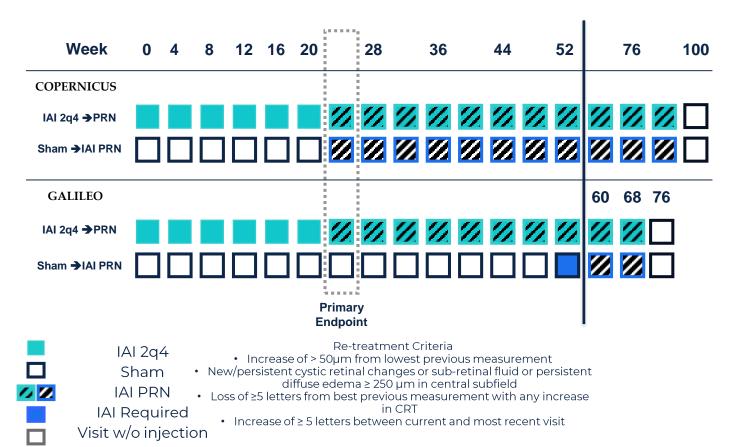
Director of Clinical Research Sierra Eye Associates

Practice Details


- Multispecialty practice with 6 physicians
- 2 retina specialists and one retina fellow
- 80-90 patients per day
- 1-3 hours of wait time in clinic
- 31 active clinical trials
- 5 research coordinators
- 65 active staff members

Edema Formation in RVO: Macular edema accounts for the majority of vision loss in RVO

Christoffersen and Larsen. Ophthalmology. 1999;106:2054; Hayreh. Indian J Ophthalmol. 1994;42:109; Noma et al. Graefes Arch Clin Exp Ophthalmol. 2006;244:309; Noma et al. Ophthalmology. 2009;116:87.

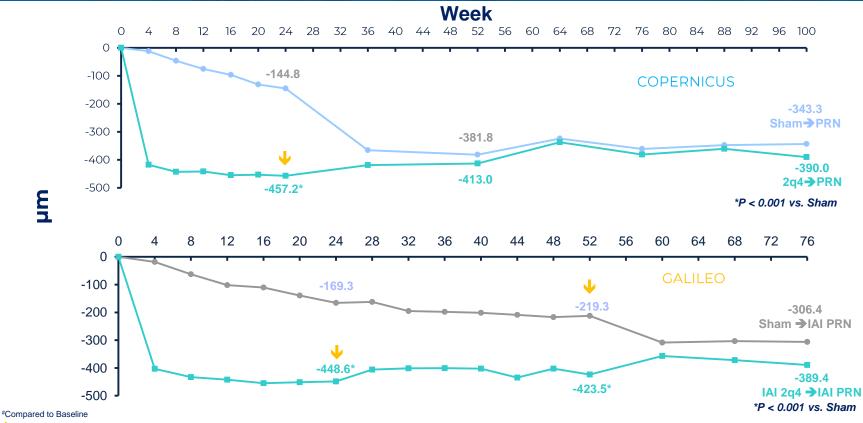

Interventions in Retinal Vein Occlusion

Scott et al. Arch Ophthalmol. 2009;127:1115; 5. Campochiaro et al. Ophthalmology. 2010;117:1102; 6. Brown et al. Ophthalmology. 2010;107:1124;
 Haller et al. Ophthalmology. 2010;107:1134; 8. "Veshaya and Treister. Ann Ophthalmol 1983;15:615; 9. Amirikia et al. Ophthalmology. 2001;108:372;
 McAllister et al. Arch Ophthalmol. 1995;13:345; 11. Dev and Buckley. Ophthalmol Surg Lasers 1999;30:18; 12. Shahi et al. Br J Ophthalmol. 2006;90:627.

Aflibercept Phase 3 CRVO Program GALILEO Study Schedule

Mean Change in Best-Corrected Visual Acuity GALILEO Over 100 Weeks[#]

#Compared to Baseline


ETDRS letter Score

Patients crossed over from Fixed IAI to IAI PRN or from Sham to IAI PRN

LOCF; full analysis set

Mean Change in Central Retinal Thickness GALILEO Over 100 Weeks#

♦ Patients crossed over from Fixed IAI to IAI PRN or from Sham to IAI PRN

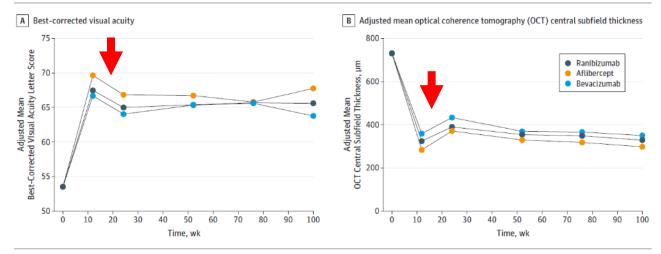
LOCF; full analysis set

LEAVO Study of CRVO

Intravitreal Ranibizumab vs Aflibercept vs Bevacizumab for Macular Edema From Retinal Vein Occlusion (LEAVO STUDY)

• Objective:

To determine whether intravitreal aflibercept or bevacizumab compared with ranibizumab results in a noninferior mean change in vision at 100 weeks for eyes with CRVO-related macular edema.


> Hykin P, Prevost AT, Vasconcelos JC, et al; LEAVO Study Group. JAMA Ophthalmol. Published online August 29, 2019. doi:10.1001/jamaophthalmol.2019.3305

LEAVO Study of CRVO

Study Design

- Randomized 1:1:1 to aflibercept, bevacizumab, or ranibizumab.
- Participants in all study groups had mandated injection at baseline and 4, 8, and 12 weeks.
- From week 16 through 96, treatment was given if 1 or more of the retreatment criteria were met.

Results: Adjusted Mean BCVA Letter Score and Adjusted Mean OCT CST Across Groups to 100 Weeks

A, Adjusted mean difference between groups at 100 weeks: aflibercept vs ranibizumab, -29.3 (95% Cl, -60.9 to 2.3); bevacizumab vs ranibizumab, -21.9 (95% Cl, -9.7 to 53.4). B, Adjusted mean difference between groups at 100 weeks: aflibercept vs ranibizumab, -29.3 (95% CI, -60.9 to 2.3); bevacizumab vs ranibizumab, 21.9 (95% CI, -9.7 to 53.4).

Reduction from peak vision and OCT occurs when monthly dosing shifts to less often

LEAVO - Conclusions

- Aflibercept was non-inferior to ranibizumab.
- Bevacizumab was not non-inferior to ranibizumab.
- Visual acuity gains increased from week 24 and were maintained to 100 weeks supporting every 4- to 8-weekly visits during the second year of follow-up regimen.
- The visual gains by 24 weeks (eg, mean [SD] in the aflibercept group, 13.4 [16.4]) were less than those reported in other trials, in which 6, not 4, mandated injections were given.

Summary: RVO trials

	CRUISE	BRAVO	GALILEO/ COPERNICUS	VIBRANT	SCORE2	LEAVO	RAVEN/ RAPTOR
Indication	CRVO	BRVO	CRVO	BRVO	CRVO	CRVO	CRVO/BRVO
Drug	Ranibizumab	Ranibizumab	Aflibercept	Aflibercept	Bevacizumab	Bevacizumab	Brolucizumab
Loading doses	6	6	6	7	6	4	6
Schedule	Monthly PRN	Monthly PRN	Monthly PRN	Q8W	Monthly/T&E or switch	4 to 8 weeks PRN	"Individualized" (monthly PRN)
Comparator	Sham	Sham	Sham	Grid laser	Aflibercept	Aflibercept/ ranibizumab	Aflibercept
Loading doses	-	-	-	-	6	4	6
Schedule	0.5 PRN after month 6	Rescue laser after month 3	-	Baseline +/-	Monthly/T&E or Ozurdex	4 to 8 weeks	"Individualized" (monthly PRN)
Primary Endpoint	BCVA change	BCVA change	% 3-line gainers	% 3-line gainers	BCVA change	BCVA change	BCVA change
Time	Month 6	Month 6	Week 24	Week 24	Month 6	Week 100	Week 24
End of Study	Month 12	Month 12	Week 76/100	Week 52	Month 12	Week 100	72 Weeks

Summary: RVO trials

	CRUISE	BRAVO	GALILEO/ COPERNICUS	VIBRANT	SCORE2	LEAVO	RAVEN/ RAPTOR
Indication	CRVO	BRVO	CRVO	BRVO	CRVO	CRVO	CRVO/BRVO
Sample Size	392 (1:1:1)	397 (1:1:1)	177 (3:2)/ 189 (3:2)	18 (1:1)	362 (1:1)	459 (1:1:1)	750/500
VA Score	70-25 letters	70-20 letters	73-24 letters	73-24 letters	73-19 letters	73-19 letters	78-23 letters
Previously Treated	No	No	No	No	Yes (60d washout)	Yes (90d washout)	No
Diagnosis	< 12 months	< 12 months		< 12 months	No limit	< 12 months	< 6 months
Study Design	Superiority	Superiority	Superiority	Superiority	Non-inferiority (5 letter margin)	Non-inferiority (5 letter margin)	?

Conclusions

- Anti-VEGF agents are first line treatment for RVO
- Aflibercept, ranibizumab, bevacizumab result in significant vision improvements
- Frequent injections are need to maintain vision and OCT improvements
- Clear unmet need for an anti-VEGF agent that is more durable

DISCUSSION

RVO

KSI-301 Phase 1b

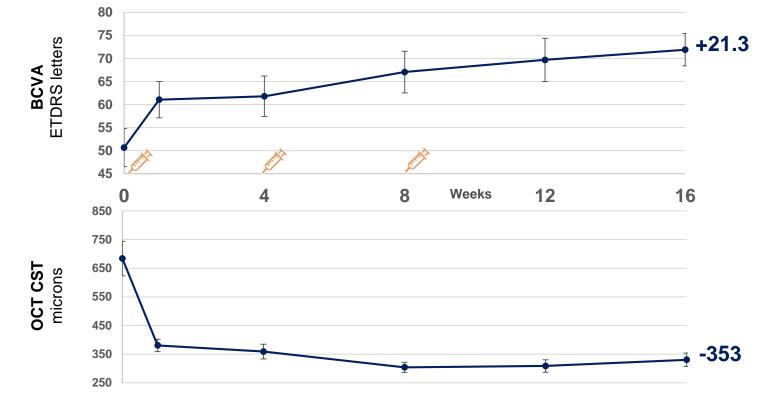
insight into durability among treatment naïve subjects

Randomized, open label study to evaluate multidose safety, efficacy & durability (n=105) **wAMD** (n=35) **RVO** (n=35) **DME** (n=35) Randomized 1:3 KSI-301 2.5 mg (50 μL) KSI-301 5 mg (100 μL) Loading Phase **Durability Assessment Phase** 32 36 Fixed Treatment 8 12 16 20 24 28 Weeks: 0 4 **Re-Treatment** Treatment Schedule: As Needed

wAMD = wet age-related macular degeneration; DME = diabetic macular edema; RVO = retinal vein occlusion; Clinicaltrials.gov ID: NCT03790852

KSI-301 Phase 1b Retreatment Criteria prespecified by disease state

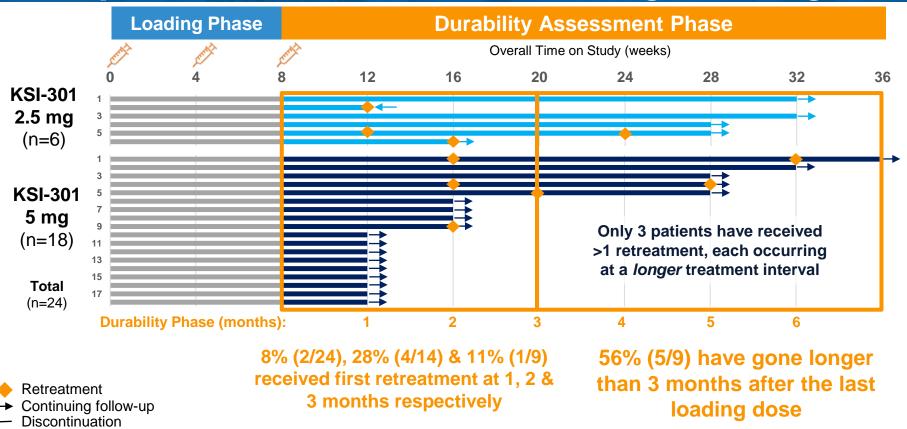
DME and RVO


- Increase in CST ≥75 µm with a decrease in BCVA of ≥ 5 letters compared to Week 12 or the prior visit, OR
- Decrease in BCVA of ≥ 10 letters compared to the best prior BCVA, due to worsening DME/RVO disease activity

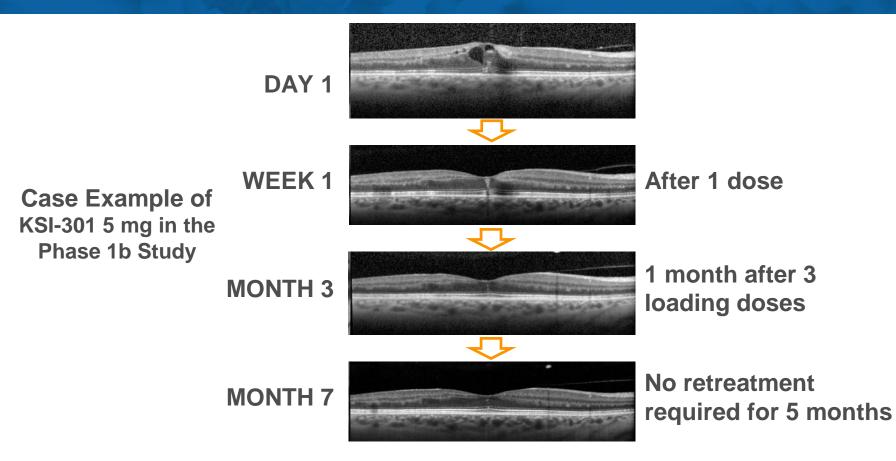
Investigators can retreat at their discretion if significant disease activity is present that does not meet the above criteria

KSI-301 Phase 1b Baseline Characteristics

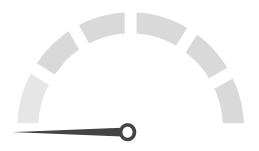
Variable	RVO Cohort (n=35)
Age, mean (SD), years	63.6 (12.6)
Gender, n (%), female	13 (37.1)
Race, n (%), White	31 (88.6)
BCVA, mean (SD), ETDRS letters	54.9 (15.4)
BCVA, Snellen 20/40 or better, n (%)	6 (17.1)
OCT CST, mean (SD), microns	675 (237)
RVO subtype, n (%)	
Branch RVO	19 (54)
Central RVO	15 (43)
Hemi RVO	1 (3)


Efficacy of KSI-301 in RVO change from baseline to week 16 in mean BCVA & OCT

Interim data. Includes only randomized patients that reached Week 16 visit by the data cutoff date of 10 Oct 2019; 2.5 & 5 mg doses pooled. Datapoints include one subject that discontinued after Week 12. Error bars represent standard error of the mean. OCT CST values are site reported. BCVA= best corrected visual acuity; OCT= optical coherence tomography; CST= central subfield thickness


n= 15 Patients reaching Week 16 visit by data cutoff

KSI-301 in RVO: emerging durability data show potential for 2 to 3 month or longer dosing



Interim data. Includes only randomized patients that reached the first retreatment opportunity (Week 12 visit) by the data cutoff date of 10 Oct 2019. Each bar represents an individual patient.

Is it possible to get a fast *AND* lasting effect of up to 5 months without retreatment after only 3 loading injections in RVO?

RVO requires early monthly treatment with current anti-VEGF therapies

Aflibercept 6 Monthly Injections during fixed dosing*

Brolucizumab 6 Monthly Injections during fixed dosing*

Fixed Dosing Phase				
Aflibercept	Monthly			
Brolucizumab	Monthly			

*According to dosing used on the Phase 3 RVO trials for aflibercept and brolucizumab.

A next generation therapy for RVO should halve the number of monthly loading injections

Aflibercept 6 Monthly Injections during fixed dosing

Brolucizumab 6 Monthly Injections during fixed dosing Next Gen. 3 or fewer monthly injections

Fixed Dosing Phase				
Aflibercept	Monthly			
Brolucizumab	Monthly			

*According to dosing used on the Phase 3 RVO trials for aflibercept and brolucizumab.

A next generation therapy for RVO should double the treatment interval from 1 to 2 months

Aflibercept 6 Monthly Injections during fixed dosing

Brolucizumab 6 Monthly Injections during fixed dosing **Next Gen.** Every other month dosing (after loading)

Fixed Dosing Phase				
Aflibercept	Monthly			
Brolucizumab	Monthly			
Next Gen.	Every 2 Months			

*According to dosing used on the Phase 3 RVO trials for aflibercept and brolucizumab.

KSI-301 Proposed Phase 3 Design in RVO Reduced loading doses with fixed Q8W dosing in the first 6 months

- Current standard of care (per label) is aflibercept *monthly*
- Overall RVO data from existing anti-VEGFs show that less than monthly dosing in first 6 months is associated with worse outcomes
- Brolucizumab Phase 3 is studying 6 monthly doses, then disease activity-based retreatments

	Fixed Dosing				PE					ents	SE		
ς Γ	0	4	8	12	16	20	24	28	32	36	40	44	48
Q20W													
Q8W	0	0	0	0	0	0		0	0	0	0	0	
KSI-301 injection					lized	(Aflib	ercept i	njection	0			
	Q20W Q8W	Q20W	0 4 Q20W Image: Constraint of the section of the sectio	0 4 8 Q20W Image: Constraint of the second sec	0 4 8 12 Q20W Image: Constraint of the second	0 4 8 12 16 Q20W Image: Constraint of the second se	0 4 8 12 16 20 Q20W Image: Constraint of the second secon	0 4 8 12 16 20 24 Q20W Image: Constraint of the second s	Image: Problem of the second state	PE Durability 0 4 8 12 16 20 24 28 32 Q20W Image: Constraint of the second state of the second st	PE Durability Association 0 4 8 12 16 20 24 28 32 36 Q20W Image: Constraint of the constra	O 4 8 12 16 20 24 28 32 36 40 Q20W Image: Constraint of the second	PE Durability Assessments 0 4 8 12 16 20 24 28 32 36 40 44 Q20W Image: Comparison of the second structure 301 injection Image: Comparison of the second structure Image: Comparison of the second structure

The second half of Year 1 patients would receive personalized treatment

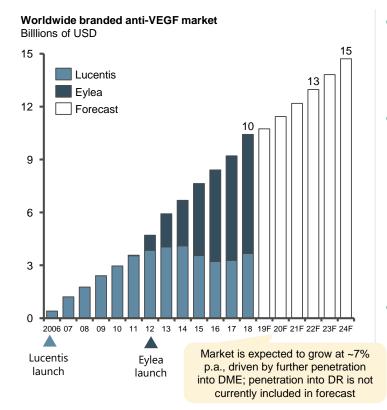
MAX CAMBRAS, M.A. – L.E.K. CONSULTING

KODIAK

KSI-301 R&D day Select Market Dynamics

Discussion document

October 14, 2019



• Project background

- KSI-301 opportunity summary presentation
- Supporting materials

The global branded anti-VEGF market exceeded \$10B in 2018; analysts expect the market to grow ~7% p.a. driven by further penetration into DME

- Anti-VEGFs are widely used to treat numerous "back-of-the-eye" indications, including:
 - Wet age-related macular degeneration
 - Retinal vein occlusion
 - Diabetic retinopathy with or without diabetic macular edema
- Retina specialists (RS) in the U.S. frequently use Avastin off-label over branded anti-VEGFs given significant cost savings (~\$55 per dose compared to ~\$2K per dose) :
 - Lucentis and Avastin are perceived to have equivalent clinical performance (similar efficacy, safety, and durability)
 - Eylea is perceived to have slightly improved binding affinity and extended dosing intervals
 - Beovu (brolucizumab) was just approved for wAMD and will likely take share from the above
- Novartis is developing a novel anti-VEGF that is likely to launch in 2019 and may incrementally improve upon Eylea's anatomic performance (e.g., retinal drying), but does not demonstrate BCVA gain over Eylea

L.E.K

Retina specialists administer anti-VEGF therapies and are the primary stakeholders influencing which anti-VEGF therapy may be prescribed

Anti-VEGF therapy stakeholders and level of influence					
Stakeholder	Institutional	Individual	Description	Level of influence	
Retina specialist (RS)	✓ Dependent on	✓ practice setting	 Retina specialists aim to improve or maintain their patients' vision RS also seek to reduce the number of IVT injections administered and may be influenced by practice economics 	High	
Patients		~	 Patients seek to improve or maintain their vision and reduce the number of intravitreal (IVT) injections received Patients aim to reduce out-of-pocket expenses 	Moderate / High	
Diabetologist		1	 Endocrinologists and PCPs seek to prevent vision loss in diabetic patients due to concomitant DME / NPDR 	Low	
Practice administrators	~		 Practice administrators seek to optimize practice economics through optimized reimbursement and favorable drug purchase arrangements 	Moderate	
Ophth. Practice networks	~		 Opthalmology systems seek to optimize practice economics through optimized reimbursement and volume of patients managed 	Moderate	
Payers	~		• Payers are incentivized to reduce the total cost of care and improve patient outcomes	Moderate	

Source: L.E.K. interviews and analysis

Clinical performance factors are the most influential incentives for physicians when selecting anti-VEGF therapies for wAMD

	Incentive	Definition Influential incentives
	Improved efficacy	 Improved visual acuity and / or morphologic outcomes as demonstrated in clinical trials
	Improved safety	Improved safety / tolerability profile as demonstrated in clinical trials
Clinical performanc	Improved dosing intervals	Less frequent injections as demonstrated in clinical trials
e	Superior outcomes through durability	 Improved patient visual acuity and / or morphologic outcomes as demonstrated in clinical trials or real-world experience
	Improved convenience	• Reduction in the burden associated with receiving anti-VEGF injections
Practice	Maximized reimbursement	• Maximization of the reimbursement recognized per injection (injection and buy-and- bill drug reimbursement)
economics	Optimal drug inventory benefits	 Optimization of the rebates and programs supporting RS practices purchasing drug inventory
Practice	Reimbursement burden on practice	 Burden of fulfilling payer access controls in order to administer banded anti-VEGF therapies
workflow	Practice productivity	 Improvement in patient throughput and / or optimization of RS administered procedure mix
Health economics	Lower total cost of care	• Reduction in the annual cost to maintain patient's vision and overall health
Patient economics	Lower patient OOP	Reduction in patient out-of-pocket costs

Anti-VEGF selection incentives

Current anti-VEGF therapies are minimally differentiated and do not adequately address key unmet needs

Current anti-	VEGF therapies						
	Off-label use		Approved	×.			
			(affibercept) Injection For Intravitreal Injection	(brolucizumab-dbll)			
Approved indications	Off-label use in wAMD, RVO, and DME	WAMD RVO PDR & NPDR DME	wAMD RVO NPDR DME	wAMD (10/19) RVO (2021E) DME (2022E)			
Efficacy	Perceived to be broadly equ	livalent	Perceived to have improved durability vs Lucentis and Avastin, and improved efficacy particularly in DME	Trial results show superior retinal fluid reduction compared to Eylea (changes in BCVA is equivalent)			
Safety	Broadly equivalent safety pr	ofiles		Early safety data indicates increased inflammatory events			
Labeled dosing intervals*	Q4W across indications		wAMD: 3 monthly loading, followed by Q8W or Q4W RVO: Q4W DME: 5 monthly loading, followed by Q8W DR: 5 monthly loading, followed by Q8W	wAMD: 3 monthly loading, followed by Q8W^or Q12W RVO: 6 monthly loading, followed by PRN DME: 5 monthly loading, followed by PRN			
	Physician perception of Less favorable favorable						

Note: * Based on U.S. label ; EU labels may indicate a dose and extend approach ; Dosages delivered in 0.05 mL
^ Patients in Brolucizumab's Hawk and Harrrier study were interval adjusted to Q8W if disease was present at Q12W

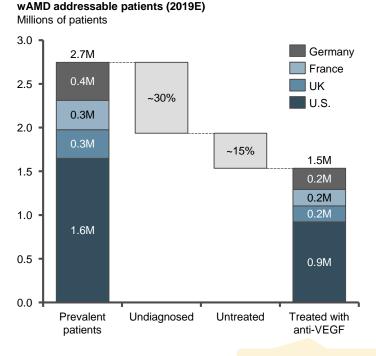
Source: Company websites, National Eye Institute, Package inserts, Cowen Therapeutic Categories Outlook 2019, Klufas et. al (2018), Dugel et. al (2019), Clinicaltrials.gov

RS consistently cite unmet needs for extended durability, improved outcomes, and reduced patient treatment burden

Key unmet needs in anti-VEGF therapy

	Improved real world outcomes	• Physicians seek therapies that offer better vision and outcomes in the real world, for instance in the setting of the extended treatment dosing intervals most patients experience
importance	Extended "on mechanism" durability	 Physicians desire improved durability to maintain therapeutic benefit through extended dosing intervals seen in real word "treat and extend" and PRN anti-VEGF dosing
Increasing level of impo	Reduced patient burden	• Physicians and patients want therapies that require less frequent injections during anti-VEGF loading and maintenance to promote compliance and prevent discontinuation
	Improved clinical trial outcomes	 Physicians seek more sustained outcomes; some physicians indicate a need for faster response time
	Patient selection NPDR w/out DME only	 Physicians need the ability to identify NPDR patients w/out DME that will benefit most from anti-VEGF therapy and outweigh the burden of anti- VEGF treatments

L.E.K


Market overview and unmet needs discussion in RVO, wAMD and DME

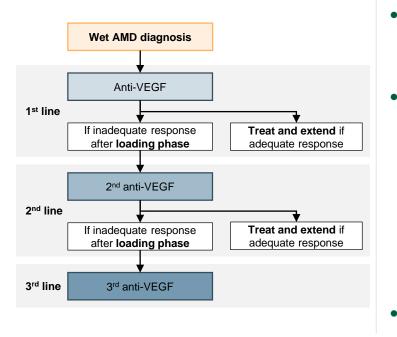
Select retinal diseases of interest

	Indication	Description
1	Wet age-related macular degeneration (wAMD)	wAMD is characterized by abrupt central vision loss caused by abnormal blood vessels that bleed or leak fluid which may swell and damage the macula
2	Retinal vein occlusion (RVO)	RVO is a blockage of the small veins that carry blood away from the retina and may cause sudden blurring or vision loss, and / or temporary loss or disturbance of central / peripheral vision
3	Diabetic macular edema (DME)	Diabetic macular edema (DME) occurs as a result of diabetic retinopathy and is defined by significant swelling of the retinal tissue caused by retinal vessels leaking blood and fluid into the macula

LEK

An estimated ~1.5M of the ~2.7M prevalent wAMD patients are treated with anti-VEGFs in 2019

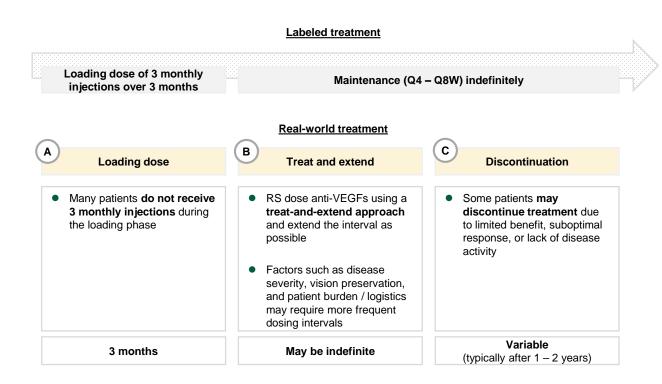
- The leakage points reducing the anti-VEGF treated patient population include:
 - Diagnosis rate: ~30% of wAMD patients are undiagnosed due to mild, unapparent symptomatology
 - Treatment rate: ~15% of wAMD patients are not treated as their disease has progressed too far to benefit from treatment or have declined treatment
- Patients that decline treatment due to the burden associated with frequent injections may become addressable as anti-VEGF dosing intervals are increased
 - Persistence on therapy may increase as dosing intervals are increased


An estimated ~60% of patients are treated with branded anti-VEGFs (Eylea, Lucentis)

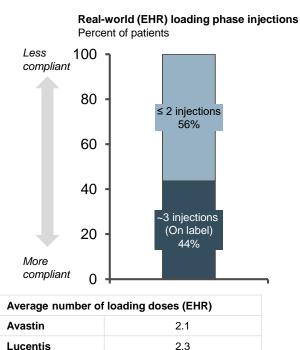
RS currently treat wAMD patients with <u>suboptimal dosing</u> which <u>leads to poorer outcomes in the</u> <u>real world</u>

wAMD treatment paradigm

1


- RS do not typically follow labeled dosing intervals
 - Nearly all retina specialists report using treat and extend dosing as opposed to labeled dosing
- In real world practice, RS aim to inject anti-VEGFs on a "treat and extend" basis; however, dosing frequency is often suboptimal due to patient logistical challenges*
 - "Treat and extend" dosing necessitates 3 monthly loading doses before extending the interval 2 weeks at a time to a maximum of 12 weeks based on patient response
 - If the disease is "re-activated," dosing interval is shortened by 2 weeks
 - Many patients do not receive 3 monthly loading doses and do not strictly adhere to "treat and extend" intervals
- Suboptimal dosing with current anti-VEGFs leads to no long-term vision gains and often results in vision dropping below baseline BCVA

Source: L.E.K. interviews and analysis of American Association of Ophthalmologists, MD Magazine, FDA, company websites, American Society of Retina Specialists (PAT) survey


Note: * There is currently no data that switching therapies improves patient vision outcomes

Most RS do not follow the labeled dosing interval and treat wAMD patients on a <u>treat-and-extend</u> <u>basis</u> to balance outcomes with patient convenience

L.E.K

<50% of new wAMD patients receive 3 loading doses due to a variety of patient barriers and varying physician perceptions on value

- EHR data suggests >50% of patients receive 2 or fewer injections within the first 3 months of therapy, likely due to patient travel burden and out-of-pocket concerns
- Physicians also have mixed opinions on the perceived value of adhering to 3 monthly loading injections
- Patients who receive 2 or fewer loading doses in the first 3 months may receive a delayed 3rd loading injection or begin the treat and extend phase early

2.3

1

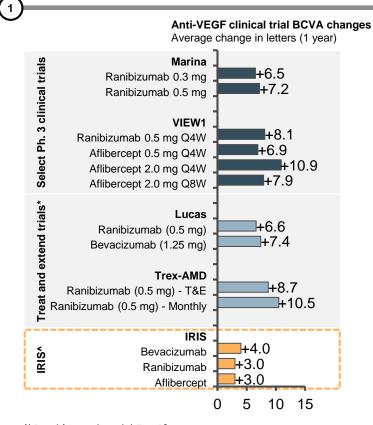
Eylea

As part of the treat-and-extend behavior, RS are injecting anti-VEGFs less frequently (Q6W – Q8W dosing schedule) than indicated ...

Physician reported dosing intervals* (N = 7) % of patients 100 -More Q10-12W extended Q10-12W Q10-12W 18% treatment 24% 29% Q6-9W 37% Q6-9W Q6-9W 50 45% 42% Q4-5W 43% Q4-5W Q4-5W 29% 27% Less extended 0 treatment Eylea** Lucentis[^] Avastin Average dosing schedule Interviewee feedback Q6W Q7W Q7-8W (weighted avg) Labeled Q4W Q4W Q8W dosing

- Physicians understand that more frequent injections typically lead to better outcomes, but note that they balance injection frequency with maintaining / improving the patient's quality of life
- Some physicians concede that if treat and extend is not managed properly, patient outcomes may be suboptimal

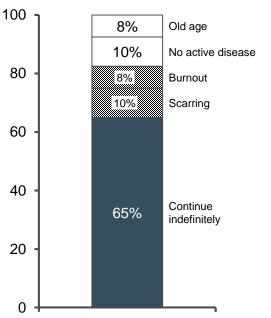
Notes: * Dosing performed by retina specialists; does not include loading period doses (typically administered monthly for first 4 injections)


^ Lucentis label indicates up to Q12W with reduced efficacy

** Eylea label indicates that some patients may need Q4W dosing

Source: L.E.K. interviews and analysis of UBS RS survey and IRIS EHR study data

... this translates into inferior patient outcomes in the real-world when compared to clinical trials



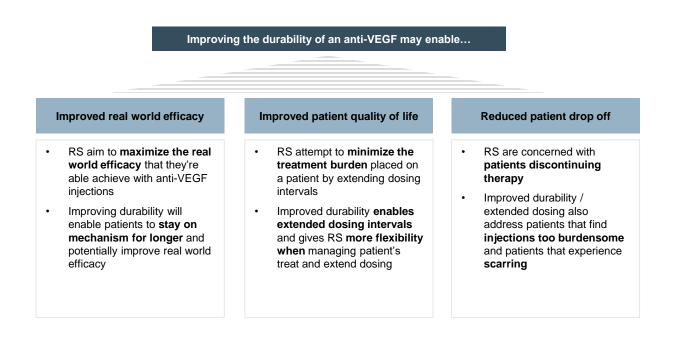
Note: * Average change in letters at 2 years ^ Converted logMARS to ETDRS Source: L=K, interviews and analysis of JMCP and clinical trial outcomes data

- A comparison of improvement in BCVA across clinical trials indicate that optimal treat and extend approaches may yield similar outcomes as clinical trials
- However, an IRIS study evaluating real-world anti-VEGF outcomes suggests real-world visual acuity gains are inferior to trials; limiting factors may include:
 - Differences in clinical trial patients and real-world patients
 - Delays in diagnosis and / or treatment approval and initiation
 - Individual patient responses to anti-VEGF therapies
 - Lapses in RS regimentation of anti-VEGF injections and monitoring
 - Inadequate patient adherence to treatment and monitoring
- A minority of physicians are aware of this

RS indicate a portion of patients discontinue treatment; <u>burnout and scarring patients</u> may be addressable with more durable treatments

Patient treatment discontinuation (N = 3) Percent of wAMD patients

- Wet AMD patients are indicated to be treated indefinitely and typically exhibit improved outcomes with continuous treatment
- However, some patients discontinue and may not be further addressed with anti-VEGFs due to:
 - No active disease: Patients may respond exceptionally well to therapy and no longer need therapy
- Other patients who discontinue treatment may continue to be addressed with anti-VEGF therapies
 - Burnout: Patients may find the frequency of injections too burdensome, which may be compounded by a possible fear of injections, high out-of-pocket costs, and difficulty traveling to injecting clinic


RS cite a number of unmet needs to improve durability, outcomes and patient convenience

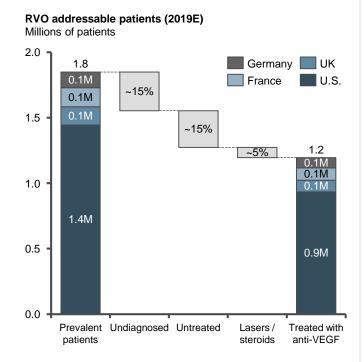
Key unmet needs in wAMD Improved durability Physicians desire improved durability and ability to consistently maintain patients at extended dosing intervals Improved outcomes Physicians want more substantial improvements to BCVA and drying of retina in a broader portion of patients Reduced patient burden Physicians also seek products that reduce treatment burden including fibrotic scarring that may lead to burnout and drop off

L.E.K

Need for improved safety / tolerability is negligible given safety profile of current anti-VEGF therapies

Anti-VEGFs with greater durability may not only improve outcomes, but also improve convenience and reduce drop off rates

L.E.K

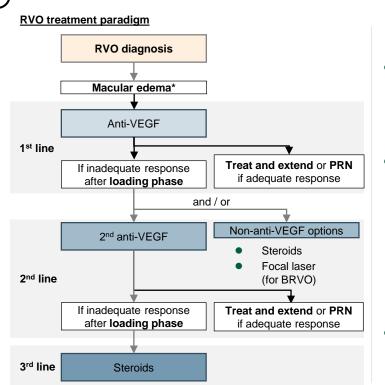

Market overview and unmet needs discussion in RVO, wAMD and DME

Select retinal diseases of interest

	Indication	Description
1	Wet age-related macular degeneration (wAMD)	wAMD is characterized by abrupt central vision loss caused by abnormal blood vessels that bleed or leak fluid which may swell and damage the macula
2	Retinal vein occlusion (RVO)	RVO is a blockage of the small veins that carry blood away from the retina and may cause sudden blurring or vision loss, and / or temporary loss or disturbance of central / peripheral vision
3	Diabetic macular edema (DME)	Diabetic macular edema (DME) occurs as a result of diabetic retinopathy and is defined by significant swelling of the retinal tissue caused by retinal vessels leaking blood and fluid into the macula

LEK

An estimated ~1.2M of the ~1.8M prevalent RVO patients are treated with anti-VEGF therapies in 2019



- The leakage points reducing currently anti-VEGF treated patients include:
 - Diagnosis rate: ~15% of RVO patients are estimated to be undiagnosed due to mild symptoms not detected by optometrists or noticed by patients
 - Treatment rate: ~15% of diagnosed do not initiate treatment because providers do not perceive the symptoms to be severe enough to justify the treatment burden
 - Laser / steroids²: ~5% of patients will begin with steroid or laser treatment without anti-VEGF treatment, potentially due to severity or inflammatory nature of their condition
- Addressable population of ~1.2M includes new patients, patients on treat and extend, PRN patients, and those that have received anti-VEGFs but have become inactive

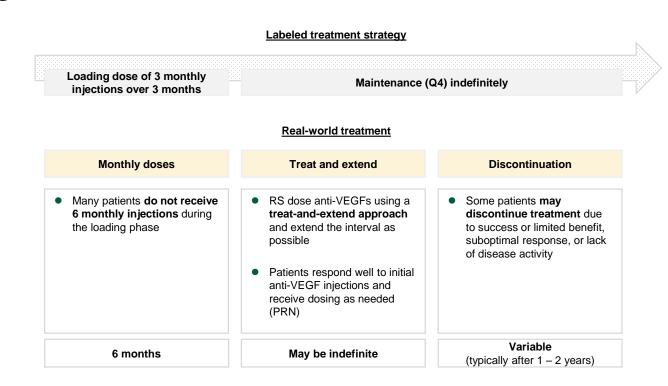
L.E.K

2

RVO patients typically do not receive the recommended monthly injections of current anti-VEGFs needed to maintain improvement in BCVA, leading to suboptimal outcomes

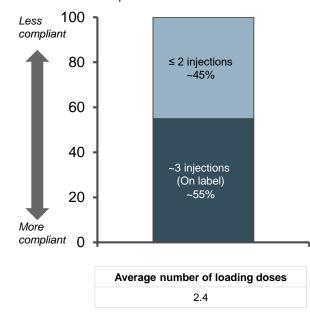
- RS <u>do not typically follow labeled dosing</u> <u>intervals</u>
 - German and French physicians typically do not use Avastin as it is off label
 - UK physicians decide on treatment based on presence or absence of ischemia[^]
- In real world practice, RS aim to dose anti-VEGFs on a "treat and extend" or PRN basis; however, dosing frequency is often suboptimal due to patient logistical challenges
 - Many patients receive only 2-3 monthly loading injections instead of the 6 recommended by branded anti-VEGF labels
 - Given RS perception that RVO patients respond well to anti-VEGFs, patients may discontinue therapy at a higher rate than other indications
- Recent studies (LEAVO, May 2019) indicate that <u>failure to adhere to labeled loading dose</u> <u>recommendations leads to poorer outcomes</u>

Note: * Patients with neovascularization are treated with a combination of laser and anti-VEGF injections


^ Treatment paradigm for ischemic patients corresponds with that for neovascularization patients

Source: L.E.K. interviews and analysis of American Association of Ophthalmologists, MD Magazine, FDA, and company websites

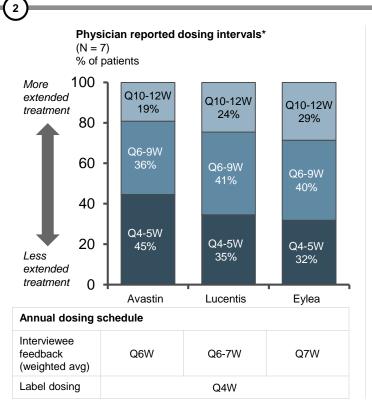
່ 2 ່


Most RS treat RVO with ME patients on a <u>treat-and-extend</u> or <u>PRN</u> basis to optimize the balance of patient outcomes with quality of life

LEK

2

The majority of new RVO patients receive < 3 injections during the first 3 months of treatment

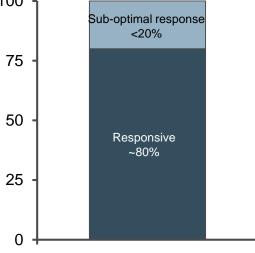


Real-world monthly dose phase injections* Percent of patients

- Physician opinions vary on the optimal dosing interval for RVO patients
- Rationale for not receiving on-label dosing varies; some reasons include:
 - A subset of patients show immediate response and RS extend dosing intervals early
 - Other retina specialists indicate other nonclinical factors (e.g., patient convenience) may impede RS ability to administer monthly anti-VEGF injections

2

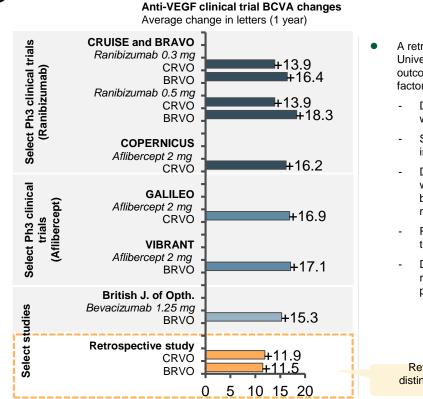
RS extend anti-VEGF dosing to Q6-9W (nearly 2x as labeled) in RVO patients


- RS seek to balance patient outcomes with maintenance and / or improvement of the patient's convenience
- RS preferentially treat at Q6-9W as opposed to extending beyond, given the likelihood of shifting patients to a treat as needed dosing regimen
- Some RS indicate that RVO patients typically respond very well to anti-VEGFs and may place the patient on PRN during or soon after the loading phase

LEK

Note: * Dosing performed by retina specialists; does not include loading period doses (typically administered monthly for first 4 injections) Source: L.E.K. interviews and analysis, UBS <20% of patients have sub-optimal responses to 1st line anti-VEGFs and may receive a combination of laser, steroid, or 2nd line anti-VEGF

Patient responsiveness to 1st line anti-VEGF Percentage


2

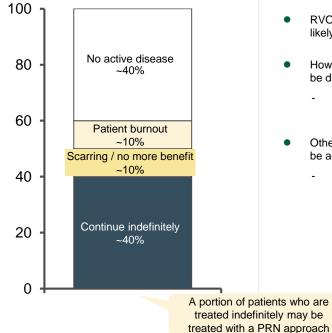
- 10-20% of RVO patients may show sub-optimal response to 1st line anti-VEGFs and are treated with a 2nd line therapy
 - Patients with glaucoma or cataracts are typically switched to another anti-VEGF if their response after 3
 4 injections of the 1st line anti-VEGF is suboptimal
 - Other patients may receive steroids and / or focal laser with / without anti-VEGF

L.E.K

Real-world outcomes of anti-VEGF therapies in RVO may be slightly inferior compared to outcomes demonstrated in clinical trials

- A retrospective real-world outcomes study from University of Sydney demonstrated inferior outcomes compared to clinical trials; limiting factors may include:
 - Differences in clinical trials patients and realworld patients
 - Study subjects are not representative of international RVO patients
 - Differences in dosing regimen in the real world; studies employed monthly dosing before extending whereas real world providers may switch to PRN
 - Real world delays in diagnosis and / or treatment approval and initiation
 - Differences in standards for data collection by real-world providers and clinical trial physicians / scientists

Retrospective study did not distinguish between anti-VEGF therapies


2

~40% of patients maintain anti-VEGF therapy indefinitely, ~40% discontinue due to good response, and ~20% discontinue due to burnout or scarring

Patient treatment discontinuation

2

Percent of discontinued RVO patients

- RVO patients are indicated to be treated indefinitely and likely exhibit better outcomes with continuous treatment
- However, many patients will discontinue therapy and may be difficult to address with anti-VEGFs due to:
 - No active disease: Patients typically respond well to anti-VEGF therapy and may no longer need injections
- Other patients who discontinue treatment may continue to be addressed with anti-VEGF therapies
 - Burnout: Patients may find the frequency of injections too burdensome, which may be compounded by a possible fear of injections, high outof-pocket costs, and difficulty traveling to injecting clinic

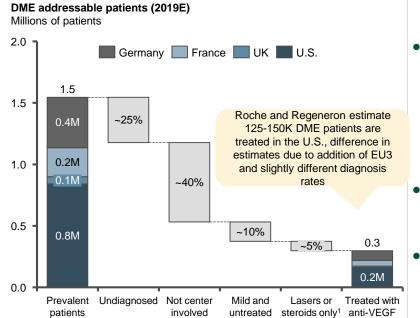
L.E.K

Novel MoAs for reducing breakdown of blood-retinal barrier are in development, but RS are most interested in extended anti-VEGF dosing to reduce under treatment

Pipeline drugs for DME

(2)

Drug class	Overview	Key examples
Novel anti- VEGFs	Novel, longer-acting anti-VEGFs may improve compliance among DME patients	Novartis's Beovu (RTH258) is an antibody fragment that effectively penetrates tissues due to small molecular weight and is highly efficacious in drying the retina
Biologics	Non-VEGF biologics provide novel options for patients not responsive to anti-VEGFs	Daiichi Sankyo's DS-7080a is a monoclonal antibody that inhibits angiogenesis
VEGF biosimilars	Physicians indicate that VEGF biosimilars may displace biologics due to lower price	Momenta's M-710 is an Eylea biosimilar being developed for DME
Bispecific antibodies	Inhibit multiple targets to theoretically increase efficacy	Roche's Faricimab targets VEGF and ANG2 and demonstrated significant visual acuity gains in Phase II trials
Implantable devices	Implanted devices that deliver anti-angiogenic drugs in a sustained fashion	Aerie's ENV-1105 is a bioerodible implant that delivers extended release version of dexamethasone
Small molecules	Small molecules that target non-VEGF factors that stabilize or prevent DME symptoms	Allegro's Luminate is an integrin inhibitor that reduces oxidative stress upstream of increased vascular permeability, angiogenesis, inflammation, and cell death
Steroids	Option for refractory patients due to broad anti- inflammatory and anti-angiogenic functions	EyeGate Pharma's EGP-437 utilizes an iontophoresis to deliver a high ocular concentration of dexamethasone

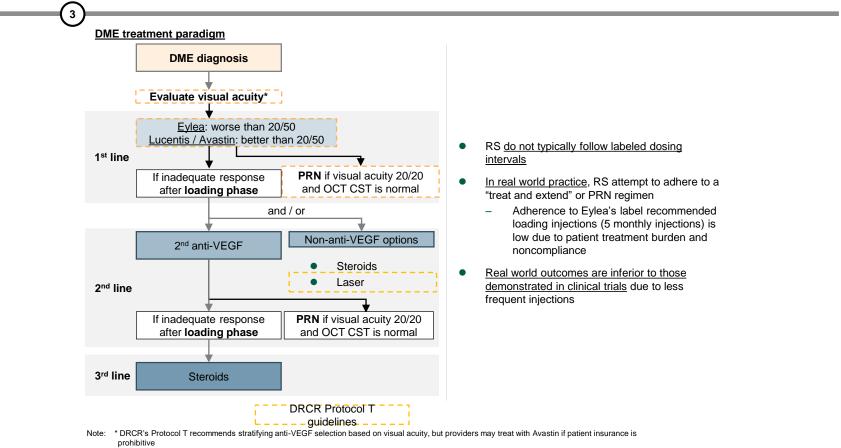

Market overview and unmet needs discussion in RVO, wAMD and DME

Select retinal diseases of interest

	Indication	Description		
1	Wet age-related macular degeneration (wAMD)	wAMD is characterized by abrupt central vision loss caused by abnormal blood vessels that bleed or leak fluid which may swell and damage the macula		
2	Retinal vein occlusion (RVO)	RVO is a blockage of the small veins that carry blood away from the retina and may cause sudden blurring or vision loss, and / or temporary loss or disturbance of central / peripheral vision		
3	Diabetic macular edema (DME)	Diabetic macular edema (DME) occurs as a result of diabetic retinopathy and is defined by significant swelling of the retinal tissue caused by retinal vessels leaking blood and fluid into the macula		

LEK

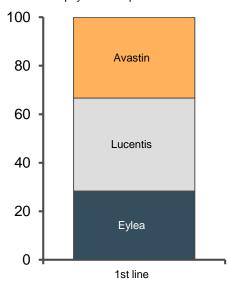
~0.3M / ~1.5M prevalent DME patients are treated with anti-VEGFs as most patients with not center involved or mild disease are not currently treated


- Patient leakage points include:
 - Diagnosis rate: ~25% of patients remain undiagnosed due to mild symptomology
 - Laser / steroids*: ~5% of patients begin with steroid or laser treatment (e.g. mild symptoms in the periphery) and are never treated with an anti-VEGF
- Not center involved (~40%) and mild (~10%) DME patients are typically not treated due to current anti-VEGF treatment burden and limited visual symptoms
- Addressable population of ~0.3M includes patients who will receive at least 1 dose of anti-VEGF

Notes: * These patients may have disease localized to periphery or exhibit intraocular inflammation and / or epiretinal membranes Source: L.E.K. interviews and analysis of Cowen, Regeneron investor presentation, Roche investor presentation, Journal of Diabetes Research, JAMA Ophthalmology

່ 3 ່

DME patients currently receive suboptimal anti-VEGF dosing, leading to poorer real world outcomes

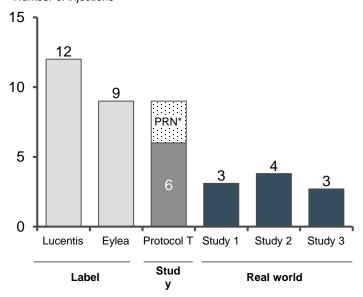


Source: L.E.K. interviews and analysis of American Association of Ophthalmologists, MD Magazine, FDA, and company websites

RS administer anti-VEGF therapies 1st line and often use focal lasers 2nd line based on Protocol T; however, some physicians may use steroids or another anti-VEGF

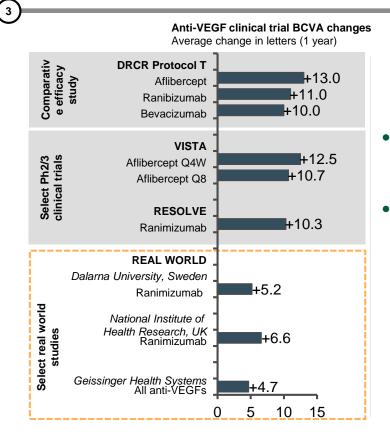
First line anti-VEGF treatment used Percent of physician respondents

່ 3 `


- Retina specialists will prescribe Eylea or Lucentis first line in accordance with DRCR.net Protocol T guidelines, but may still prescribe Avastin first line
- DRCR guidelines recommend laser as second-line treatment, but providers may use steroids or another anti-VEGF due to potential vision loss caused by lasers

DME patients are dosed less frequently than drug labels and Protocol T guideline recommendations...

Anti-VEGF injections in first 12 months of treatment Number of injections


3

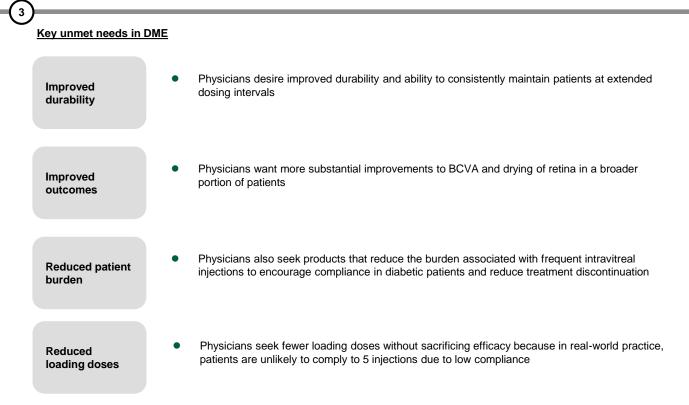
- Lucentis and Eylea labels recommend 9-12 injections in the first year of treatment
- DRCR Protocol T recommends 6 monthly injections before transitioning responsive patients to PRN
- Some RS may use treat and extend dosing as it facilitates practice workflow

Analyses of EHR data demonstrate that DME patients receive 3-4 injections on average in the first year of treatment

... which has resulted in real world outcomes that are inferior to those demonstrated in clinical trials

- Retrospective studies on real-world outcomes in the U.S., UK, and Sweden demonstrate inferior real world outcomes compared to clinical trials primarily due to less frequent dosing
- Additional limiting factors may include:
 - Differences in clinical trials patients and realworld patients
 - Real world delays in diagnosis and / or treatment approval and initiation
 - Differences in standards for data collection by real-world providers and clinical trial physicians / scientists

Patients who discontinue anti-VEGFs by switching to 2nd line therapy or due to scarring or burnout may be addressable with improved dosing intervals


Directional – Low N Patient treatment discontinuation Percent of DME patients 100 ~15% No active disease DME patients are indicated to be treated indefinitely and likely exhibit better outcomes with continuous treatment 80 ~10% Burnout / noncompliant Patients with no active disease will discontinue therapy ~10% Scarring / no more benefit and may be difficult to address with anti-VEGFs 60 Some patients who discontinue treatment may continue ~20% Second line laser / steroid to be addressed with use of KSI-301: Burnout: Patients may find the frequency of 40 injections too burdensome, which may be compounded by a possible fear of injections, high out-of-pocket costs, and difficulty traveling to injecting clinic ~45% Continue anti-VEGF indefinitely 20 Second line laser / steroid: Patients showing suboptimal response to anti-VEGFs may transition to laser or steroid treatments second line

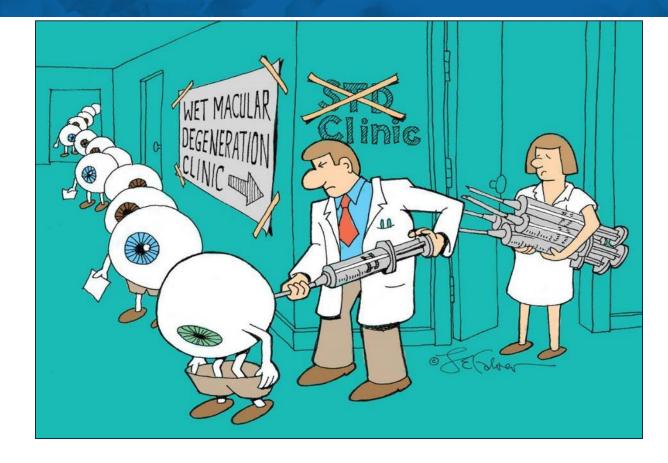
L.E.K

0

່ 3 ່

Retina specialists identify a number of unmet needs affecting anti-VEGF use in DME patients




NANCY HOLEKAMP, M.D.

Director of Retina Services Pepose Vision Institute

Dosing Approaches in Clinical Trials

In nAMD, We are Injection Clinics!

Real-World Data: Most Patients With Wet AMD Received 5 Injections/Year

	Study Population	Injection Duration, Y	Mean Injection Rate	
Medicare analysis ¹	459,237	1	4.3	
LUMINOUS ²	4,437	1	4.3-5.5	(and and
Retrospective claims analysis ³	11,688	1	4.5-6.8	
Retrospective claims analysis ⁴	53,621	1	4.6-6.9	A-MIL

1. Lad EM et al. Am J Ophthalmol. 2014;158(3):537-543.e2, 2. Holz FG et al. Br J Ophthalmol. 2013;97(9):1161-1167, 3. Kiss S et al. Ophthalmic Surg Lasers Imaging Retina. 2014;45(4):285-291, 4. Holekamp NM, et al. Am J Ophthalmol. 2014;157(4):825-833.e1.

Major unmet need = More durable anti-VEGF

Anti-VEGF therapy for nAMD in 2019

- Available agents: Ranibizumab, aflibercept, bevacizumab "Me Too Drugs": Similar efficacy, safety and durability Biosimilars, Avastin, anti-VEGF C and D will not change the landscape Even brolucizumab and abicipar are not disruptive
- Dosing:

•

Individualized, SD OCT-guided Treat and Extend most common, but requires frequent injections Competitor strategies to extend dosing are surgically implanted devices or gene therapy

Real world

The limits of "Healthcare" delivery of anti-VEGF therapy is 5 injections/year This under treatment is prevalent and problematic: poor long-term VA outcomes

Kodiak ABC Platform and KSI-301

- The tolerance of the current health care system is 5 injections Make it a durable, effective drug
- Better durability promises better long-term visual outcomes with a reasonable number of doses
- Ideal platform for retina drug development across all disease states

The Promise of KSI-301 for Stakeholders

A. The Physician:

- 1. Flexible dosing with extended intervals of 12, 16, and 20 weeks after 3 loading doses
- 2. Currently, RW average of 5 injections/patient. Reimbursement will not change.
- 3. Will give a more durable drug, better patient care, better visual acuity in the real world

B. The Patient:

- 1. Patients absolutely love extended dosing
- 2. Patients absolutely love maintaining initial VA gains long term

C. The Payor

- 1. A realistically finite number of injections per year will be given per patient
- 2. A more predictable number of injections per year
- 3. Potentially less monitoring visits, OCT's and related expenses
- 4. Better vision = Better health for each patient

Science-driven approach led to design of ABC Platform and KSI-301

KODIAK SCIENCES

R&D DAY WRAP UP

Phase 1b data has generated durability proof of concept, and the emerging results lend high confidence in demonstrating meaningful differentiation in pivotal studies across the four major retinal vascular diseases

Kodiak is planning to initiate four pivotal studies, beginning with DAZZLE, to execute on its accelerated 2022 Vision

Important commercial opportunity exists for a medicine with the durability potential of KSI-301

Kodiak continues to invest in a pipeline of retinal disease medicines built on the ABC Platform

THANK YOU

KODAK

THE OPHTHALMOLOGY MEDICINES COMPANY